
Mathics
A free, light-weight alternative to Mathematica

The Mathics Team

October 27, 2013

Contents

I. Manual 5

1. Introduction 6

2. Installation 8

3. Language tutorials 10

4. Examples 25

5. Web interface 29

6. Implementation 30

II. Reference of built-in symbols 34

I. Algebra 35

II. Arithmetic functions 38

III. Assignment 47

IV. Attributes 56

V. Calculus functions 60

VI. Combinatorial 65

VII. Comparison 66

VIII. Control statements 69

IX. Date and Time 74

X. Differential equation solver functions 78

XI. Evaluation 79

XII. Exponential, trigonometric and hyperbolic functions 82

XIII. Functional programming 88

2

XIV. Graphics 90

XV. Graphics (3D) 99

XVI. Input and Output 102

XVII. Integer functions 108

XVIII. Linear algebra 109

XIX. List functions 112

XX. Logic 122

XXI. Number theoretic functions 123

XXII. Numeric evaluation 127

XXIII. Options and default arguments 131

XXIV. Patterns and rules 134

XXV. Plotting 139

XXVI. Physical and Chemical data 145

XXVII. Random number generation 147

XXVIII. Recurrence relation solvers 150

XXIX. Special functions 151

XXX. Scoping 159

XXXI. String functions 161

XXXII. Structure 165

XXXIII. System functions 170

XXXIV. Tensor functions 171

XXXV. File Operations 174

XXXVI. Importing and Exporting 189

III. License 193

A. GNU General Public License 194

B. Included software and data 205

3

Index 208

4

Part I.

Manual

5

1. Introduction

Mathics—to be pronounced like “Mathe-
matics” without the “emat”—is a general-
purpose computer algebra system (CAS). It
is meant to be a free, light-weight alternative
to Mathematica®. It is free both as in “free
beer” and as in “freedom”. There is an on-
line interface at http://www.mathics.net/,
but it is also possible to run Mathics locally.

The programming language of Mathics is
meant to resemble Wolfram’s famous Math-
ematica® as much as possible. However,
Mathics is in no way affiliated or supported
by Wolfram. Mathics will probably never
have the power to compete with Mathemat-
ica® in industrial applications; yet, it might
be an interesting alternative for educational
purposes.

Contents

Why yet another
CAS? 6

What does it offer? . 7
What is missing? . . 7

Who is behind it? . . 7

Why yet another CAS?

Mathematica® is great, but it has one big dis-
advantage: It is not free. On the one hand,
people might not be able or willing to pay
hundreds of dollars for it; on the other hand,
they would still not be able to see what’s go-
ing on “inside” the program to understand
their computations better. That’s what free
software is for!
Mathics aims at combining the best of both
worlds: the beauty of Mathematica® backed
by a free, extensible Python core.
Of course, there are drawbacks to the Math-
ematica® language, despite all its beauty. It
does not really provide object orientation
and especially encapsulation, which might
be crucial for big software projects. Never-
theless, Wolfram still managed to create their
amazing Wolfram|Alpha entirely with Math-
ematica®, so it can’t be too bad!
However, it is not even the intention of
Mathics to be used in large-scale projects

and calculations—at least not as the main
framework—but rather as a tool for quick
explorations and in educating people who
might later switch to Mathematica®.

What does it offer?

Some of the most important features of
Mathics are

• a powerful functional programming
language,

• a system driven by pattern matching
and rules application,

• rationals, complex numbers, and
arbitrary-precision arithmetic,

• lots of list and structure manipulation
routines,

• an interactive graphical user inter-
face right in the Web browser using
MathML (apart from a command line
interface),

• creation of graphics (e.g. plots) and

6

http://www.mathics.net/

display in the browser using SVG for
2D graphics and WebGL for 3D graph-
ics,

• an online version at http://www.
mathics.net for instant access,

• export of results to LATEX (using
Asymptote for graphics),

• a very easy way of defining new func-
tions in Python,

• an integrated documentation and test-
ing system.

What is missing?

There are lots of ways in which Mathics
could still be improved.
Most notably, performance is still very slow,
so any serious usage in cutting-edge in-
dustry or research will fail, unfortunately.

Speeding up pattern matching, maybe "out-
sourcing" parts of it from Python to C,
would certainly improve the whole Mathics
experience.
Apart from performance issues, new fea-
tures such as more functions in various
mathematical fields like calculus, number
theory, or graph theory are still to be added.

Who is behind it?

Mathics was created by Jan Pöschko. A list of
all people involved in Mathics can be found
in the AUTHORS file.
If you have any ideas on how to improve
Mathics or even want to help out yourself,
please contact us!

Welcome to Mathics, have fun!

7

http://www.mathics.net
http://www.mathics.net

2. Installation

Contents

Browser requirements 8
Installation

prerequisites . 8

Setup 9
Initialization 9

Running Mathics . . 9

Browser requirements

To use the online version of Mathics at http:
//www.mathics.net or a different location
(in fact, anybody could run their own ver-
sion), you need a decent version of a mod-
ern Web browser, such as Firefox, Chrome,
or Safari. Internet Explorer, even with its
relatively new version 9, lacks support for
modern Web standards; while you might be
able to enter queries and view results, the
whole layout of Mathics is a mess in Inter-
net Explorer. There might be better support
in the future, but this does not have very
high priority. Opera is not supported “of-
ficially” as it obviously has some problems
with mathematical text inside SVG graph-
ics, but except from that everything should
work pretty fine.

Installation prerequisites

To run Mathics, you need Python 2.6 or
higher on your computer. Mathics does not
support Python3 yet. On most Linux dis-
tributions and on Mac OS X, Python is al-
ready included in the system by default. For
Windows, you can get it from http://www.
python.org. Anyway, the primary target
platforms for Mathics are Linux (especially
Debian and Ubuntu) and Mac OS X. If you
are on Windows and want to help by pro-
viding an installer to make setup on Win-

dows easier, feel very welcome!
Furthermore, SQLite support is needed.
Debian/Ubuntu provides the package
libsqlite3-dev. The package python-dev
is needed as well. You can install all re-
quired packages by running

apt -get install python -dev
libsqlite3 -dev

(as super-user, i.e. either after having is-
sued su or by preceding the command with
sudo).
On Mac OS X, consider using Fink (http:
//www.finkproject.org) and install the
sqlite3-dev package.
If you are on Windows, please figure out
yourself how to install SQLite.
Get the latest version of Mathics from http:
//www.mathics.org. You will need internet
access for the installation of Mathics.

Setup

Simply run:

python setup.py install

In addition to installing Mathics, this
will download the required Python
packages sympy, mpmath, django, and
pysqlite and install them in your
Python site-packages directory (usu-
ally /usr/lib/python2.x/site-packages
on Debian or /Library/Frameworks/

8

http://www.mathics.net
http://www.mathics.net
http://www.python.org
http://www.python.org
http://www.finkproject.org
http://www.finkproject.org
http://www.mathics.org
http://www.mathics.org

Python.framework/Versions/2.x/lib/
python2.x/site-packages on Mac OS X).
Two executable files will be created in a bi-
nary directory on your PATH (usually /usr/
bin on Debian or /Library/Frameworks/
Python.framework/Versions/2.x/bin on
Mac OS X): mathics and mathicsserver.

Initialization

Before you can run the local Web server of
Mathics, you have to initialize its database
used to store variable definitions. Simply
run

$ python setup.py initialize

as the user who you want to execute
Mathics with (usually not root). This
will create an SQLite database file in
˜/.local/var/mathics/. You only have to
do that once for each user.

Running Mathics

Run

$ mathics

to start the console version of Mathics.

Run

$ mathicsserver

to start the local Web server of Mathics
which serves the Firefox GUI interface. Is-
sue

$ mathicsserver --help

to see a list of options.
You can set the used port by using the op-
tion -p, as in:

$ mathicsserver -p 8010

The default port for Mathics is 8000. Make
sure you have the necessary privileges to
start an application that listens to this port.
Otherwise, you will have to run Mathics as
super-user.
By default, the Web server is only reach-
able from your local machine. To be able
to access it from another computer, use the
option -e. However, the server is only in-
tended for local use, as it is a security risk to
run it openly on a public Web server! This
documentation does not cover how to setup
Mathics for being used on a public server.
Maybe you want to hire a Mathics developer
to do that for you?!

9

3. Language tutorials

The following sections are introductions to
the basic principles of the language of Math-
ics. A few examples and functions are pre-
sented. Only their most common usages are

listed; for a full description of their possible
arguments, options, etc., see their entry in
the Reference of built-in symbols.

Contents

Basic calculations . . 11
Symbols and

assignments . . 12
Comparisons and

Boolean logic . 12
Strings 13

Lists 14
The structure of

things 15
Functions and

patterns 17
Control statements . 18

Scoping 18
Formatting output . 21
Graphics 22
3D Graphics 23
Plotting 24

Basic calculations

Mathics can be used to calculate basic stuff:
>> 1 + 2

3

To submit a command to Mathics, press
Shift+Return in the Web interface or
Return in the console interface. The result
will be printed in a new line below your
query.
Mathics understands all basic arithmetic
operators and applies the usual operator
precedence. Use parentheses when needed:
>> 1 - 2 * (3 + 5)/ 4

−3

The multiplication can be omitted:
>> 1 - 2 (3 + 5)/ 4

−3

>> 2 4
8

Powers can be entered using ^:

>> 3 ^ 4
81

Integer divisions yield rational numbers:
>> 6 / 4

3
2

To convert the result to a floating point num-
ber, apply the function N:
>> N[6 / 4]

1.5

As you can see, functions are applied us-
ing square braces [and], in contrast to
the common notation of (and). At first
hand, this might seem strange, but this dis-
tinction between function application and
precedence change is necessary to allow
some general syntax structures, as you will
see later.
Mathics provides many common mathemat-
ical functions and constants, e.g.:
>> Log[E]

1

10

>> Sin[Pi]
0

>> Cos[0.5]
0.877582561890372716

When entering floating point numbers in
your query, Mathics will perform a numer-
ical evaluation and present a numerical re-
sult, pretty much like if you had applied N.
Of course, Mathics has complex numbers:
>> Sqrt[-4]

2I

>> I ^ 2
−1

>> (3 + 2 I)^ 4
−119 + 120I

>> (3 + 2 I)^ (2.5 - I)
43.6630044263147016 +

8.28556100627573406I

>> Tan[I + 0.5]
0.195577310065933999 +

0.842966204845783229I

Abs calculates absolute values:
>> Abs[-3]

3

>> Abs[3 + 4 I]
5

Mathics can operate with pretty huge num-
bers:
>> 100!

93 326 215 443 944 152 681 699 ˜
˜238 856 266 700 490 715 968 ˜
˜264 381 621 468 592 963 895 ˜
˜217 599 993 229 915 608 941 ˜
˜463 976 156 518 286 253 697 920 ˜
˜827 223 758 251 185 210 916 864 ˜
˜000 000 000 000 000 000 000 000

(! denotes the factorial function.) The preci-
sion of numerical evaluation can be set:

>> N[Pi, 100]
3.141592653589793238462643˜

˜383279502884197169399375˜
˜105820974944592307816406˜
˜286208998628034825342117068

Division by zero is forbidden:
>> 1 / 0

Infinite expression (division
by zero) encountered.

ComplexInfinity

Other expressions involving Infinity are
evaluated:
>> Infinity + 2 Infinity

∞

In contrast to combinatorial belief, 0^0 is un-
defined:
>> 0 ^ 0

Indeterminate expression
00 encountered.

Indeterminate

The result of the previous query to Mathics
can be accessed by %:
>> 3 + 4

7

>> % ^ 2
49

Symbols and assignments

Symbols need not be declared in Mathics,
they can just be entered and remain variable:
>> x

x

Basic simplifications are performed:
>> x + 2 x

3x

Symbols can have any name that consists of
characters and digits:
>> iAm1Symbol ^ 2

iAm1Symbol2

11

You can assign values to symbols:
>> a = 2

2

>> a ^ 3
8

>> a = 4
4

>> a ^ 3
64

Assigning a value returns that value. If you
want to suppress the output of any result,
add a ; to the end of your query:
>> a = 4;

Values can be copied from one variable to
another:
>> b = a;

Now changing a does not affect b:
>> a = 3;

>> b
4

Such a dependency can be achieved by us-
ing “delayed assignment” with the := oper-
ator (which does not return anything, as the
right side is not even evaluated):
>> b := a ^ 2

>> b
9

>> a = 5;

>> b
25

Comparisons and Boolean logic

Values can be compared for equality using
the operator ==:
>> 3 == 3

True

>> 3 == 4
False

The special symbols True and False are
used to denote truth values. Naturally, there
are inequality comparisons as well:
>> 3 > 4

False

Inequalities can be chained:
>> 3 < 4 >= 2 != 1

True

Truth values can be negated using ! (logi-
cal not) and combined using && (logical and)
and || (logical or):
>> !True

False

>> !False
True

>> 3 < 4 && 6 > 5
True

&& has higher precedence than ||, i.e. it
binds stronger:
>> True && True || False &&

False

True

>> True && (True || False)&&
False

False

Strings

Strings can be entered with " as delimeters:
>> "Hello world!"

Hello world!

As you can see, quotation marks are not
printed in the output by default. This can
be changed by using InputForm:
>> InputForm["Hello world!"]

"Hello world!"

Strings can be joined using <>:

12

>> "Hello" <> " " <> "world!"
Hello world!

Numbers cannot be joined to strings:
>> "Debian" <> 6

String expected.

Debian<>6

They have to be converted to strings using
ToString first:
>> "Debian" <> ToString[6]

Debian6

Lists

Lists can be entered in Mathics with curly
braces { and }:
>> mylist = {a, b, c, d}

{a, b, c, d}

There are various functions for constructing
lists:
>> Range[5]

{1, 2, 3, 4, 5}

>> Array[f, 4]

{ f [1] , f [2] , f [3] , f [4]}

>> ConstantArray[x, 4]

{x, x, x, x}

>> Table[n ^ 2, {n, 2, 5}]

{4, 9, 16, 25}

The number of elements of a list can be de-
termined with Length:
>> Length[mylist]

4

Elements can be extracted using double
square braces:
>> mylist[[3]]

c

Negative indices count from the end:
>> mylist[[-3]]

b

Lists can be nested:
>> mymatrix = {{1, 2}, {3, 4},

{5, 6}};

There are alternate forms to display lists:
>> TableForm[mymatrix]

1 2
3 4
5 6

>> MatrixForm[mymatrix] 1 2
3 4
5 6


There are various ways of extracting ele-
ments from a list:
>> mymatrix[[2, 1]]

3

>> mymatrix[[;;, 2]]

{2, 4, 6}

>> Take[mylist, 3]

{a, b, c}

>> Take[mylist, -2]

{c, d}

>> Drop[mylist, 2]

{c, d}

>> First[mymatrix]

{1, 2}

>> Last[mylist]

d

>> Most[mylist]

{a, b, c}

>> Rest[mylist]

{b, c, d}

Lists can be used to assign values to multi-
ple variables at once:
>> {a, b} = {1, 2};

13

>> a
1

>> b
2

Many operations, like addition and multi-
plication, “thread” over lists, i.e. lists are
combined element-wise:
>> {1, 2, 3} + {4, 5, 6}

{5, 7, 9}

>> {1, 2, 3} * {4, 5, 6}

{4, 10, 18}

It is an error to combine lists with unequal
lengths:
>> {1, 2} + {4, 5, 6}

Objects of unequal length
cannot be combined.
{1, 2} + {4, 5, 6}

The structure of things

Every expression in Mathics is built upon the
same principle: it consists of a head and an
arbitrary number of children, unless it is an
atom, i.e. it can not be subdivided any fur-
ther. To put it another way: everything is
a function call. This can be best seen when
displaying expressions in their “full form”:
>> FullForm[a + b + c]

Plus [a, b, c]

Nested calculations are nested function
calls:
>> FullForm[a + b * (c + d)]

Plus [a, Times [b, Plus [c, d]]]

Even lists are function calls of the function
List:
>> FullForm[{1, 2, 3}]

List [1, 2, 3]

The head of an expression can be deter-
mined with Head:
>> Head[a + b + c]

Plus

The children of an expression can be ac-
cessed like list elements:
>> (a + b + c)[[2]]

b

The head is the 0th element:
>> (a + b + c)[[0]]

Plus

The head of an expression can be exchanged
using the function Apply:
>> Apply[g, f[x, y]]

g
[
x, y
]

>> Apply[Plus, a * b * c]

a + b + c

Apply can be written using the operator @@:
>> Times @@ {1, 2, 3, 4}

24

(This exchanges the head List of {1, 2,
3, 4} with Times, and then the expression
Times[1, 2, 3, 4] is evaluated, yielding
24.) Apply can also be applied on a certain
level of an expression:
>> Apply[f, {{1, 2}, {3, 4}},

{1}]

{ f [1, 2] , f [3, 4]}

Or even on a range of levels:
>> Apply[f, {{1, 2}, {3, 4}},

{0, 2}]

f
[

f [1, 2] , f [3, 4]
]

Apply is similar to Map (/@):
>> Map[f, {1, 2, 3, 4}]

{ f [1] , f [2] , f [3] , f [4]}

>> f /@ {{1, 2}, {3, 4}}{
f
[
{1, 2}

]
, f
[
{3, 4}

]}
The atoms of Mathics are numbers, symbols,
and strings. AtomQ tests whether an expres-
sion is an atom:
>> AtomQ[5]

True

14

>> AtomQ[a + b]
False

The full form of rational and complex num-
bers looks like they were compound expres-
sions:
>> FullForm[3 / 5]

Rational [3, 5]

>> FullForm[3 + 4 I]
Complex [3, 4]

However, they are still atoms, thus unaf-
fected by applying functions, for instance:
>> f @@ Complex[3, 4]

3 + 4I

Nevertheless, every atom has a head:
>> Head /@ {1, 1/2, 2.0, I, "a

string", x}

{Integer, Rational, Real,
Complex, String, Symbol}

The operator === tests whether two expres-
sions are the same on a structural level:
>> 3 === 3

True

>> 3 == 3.0
True

But
>> 3 === 3.0

False

because 3 (an Integer) and 3.0 (a Real) are
structurally different.

Functions and patterns

Functions can be defined in the following
way:
>> f[x_] := x ^ 2

This tells Mathics to replace every occur-
rence of f with one (arbitrary) parameter x
with x ^ 2.
>> f[3]

9

>> f[a]

a2

The definition of f does not specify anything
for two parameters, so any such call will
stay unevaluated:
>> f[1, 2]

f [1, 2]

In fact, functions in Mathics are just one as-
pect of patterns: f[x_] is a pattern that
matches expressions like f[3] and f[a]. The
following patterns are available:

_ or Blank[]
matches one expression.

Pattern[x, p]
matches the pattern p and stores the
value in x.

x_ or Pattern[x, Blank[]]
matches one expression and stores it
in x.

__ or BlankSequence[]
matches a sequence of one or more
expressions.

___ or BlankNullSequence[]
matches a sequence of zero or more
expressions.

_h or Blank[h]
matches one expression with head h.

x_h or Pattern[x, Blank[h]]
matches one expression with head h
and stores it in x.

p | q or Alternatives[p, q]
matches either pattern p or q.

p ? t or PatternTest[p, t]
matches p if the test t[p] yields True.

p /; c or Condition[p, c]
matches p if condition c holds.

Verbatim[p]
matches an expression that equals p,
without regarding patterns inside p.

As before, patterns can be used to define
functions:
>> g[s___] := Plus[s] ^ 2

15

>> g[1, 2, 3]
36

MatchQ[e, p] tests whether e matches p:
>> MatchQ[a + b, x_ + y_]

True

>> MatchQ[6, _Integer]

True

ReplaceAll (/.) replaces all occurrences of a
pattern in an expression using a Rule given
by ->:
>> {2, "a", 3, 2.5, "b", c} /.

x_Integer -> x ^ 2

{4, a, 9, 2.5, b, c}

You can also specify a list of rules:
>> {2, "a", 3, 2.5, "b", c} /. {

x_Integer -> x ^ 2.0,
y_String -> 10}

{4., 10, 9., 2.5, 10, c}

ReplaceRepeated (//.) applies a set of rules
repeatedly, until the expression doesn’t
change anymore:
>> {2, "a", 3, 2.5, "b", c} //.

{x_Integer -> x ^ 2.0,
y_String -> 10}

{4., 100., 9., 2.5, 100., c}

There is a “delayed” version of Rule which
can be specified by :> (similar to the relation
of := to =):
>> a :> 1 + 2

a:>1 + 2

>> a -> 1 + 2
a->3

This is useful when the right side of a rule
should not be evaluated immediately (be-
fore matching):
>> {1, 2} /. x_Integer -> N[x]

{1, 2}

Here, N is applied to x before the actual
matching, simply yielding x. With a de-

layed rule this can be avoided:
>> {1, 2} /. x_Integer :> N[x]

{1., 2.}

While ReplaceAll and ReplaceRepeated
simply take the first possible match into ac-
count, ReplaceList returns a list of all pos-
sible matches. This can be used to get all
subsequences of a list, for instance:
>> ReplaceList[{a, b, c}, {___,

x__, ___} -> {x}]

{{a} , {a, b} , {a, b,
c} , {b} , {b, c} , {c}}

ReplaceAll would just return the first ex-
pression:
>> ReplaceAll[{a, b, c}, {___,

x__, ___} -> {x}]

{a}

In addition to defining functions as rules for
certain patterns, there are pure functions that
can be defined using the & postfix operator,
where everything before it is treated as the
funtion body and # can be used as argument
placeholder:
>> h = # ^ 2 &;

>> h[3]
9

Multiple arguments can simply be indexed:
>> sum = #1 + #2 &;

>> sum[4, 6]
10

It is also possible to name arguments using
Function:
>> prod = Function[{x, y}, x * y

];

>> prod[4, 6]

24

Pure functions are very handy when func-
tions are used only locally, e.g., when com-
bined with operators like Map:

16

>> # ^ 2 & /@ Range[5]

{1, 4, 9, 16, 25}

Sort according to the second part of a list:
>> Sort[{{x, 10}, {y, 2}, {z,

5}}, #1[[2]] < #2[[2]] &]

{{y, 2} , {z, 5} , {x, 10}}

Functions can be applied using prefix or
postfix notation, in addition to using []:
>> h @ 3

9

>> 3 // h
9

Control statements

Like most programming languages, Mathics
has common control statements for condi-
tions, loops, etc.:

If[cond, pos, neg]
returns pos if cond evaluates to True,
and neg if it evaluates to False.

Which[cond1, expr1, cond2, expr2,
...]

yields expr1 if cond1 evaluates to
True, expr2 if cond2 evaluates to
True, etc.

Do[expr, {i, max}]
evaluates expr max times, substituting
i in expr with values from 1 to max.

For[start, test, incr, body]
evaluates start, and then iteratively
body and incr as long as test evaluates
to True.

While[test, body]
evaluates body as long as test evalu-
ates to True.

Nest[f, expr, n]
returns an expression with f applied
n times to expr.

NestWhile[f, expr, test]
applies a function f repeatedly on an
expression expr, until applying test on
the result no longer yields True.

FixedPoint[f, expr]
starting with expr, repeatedly applies
f until the result no longer changes.

>> If[2 < 3, a, b]
a

>> x = 3; Which[x < 2, a, x > 4,
b, x < 5, c]

c

Compound statements can be entered with
;. The result of a compound expression is
its last part or Null if it ends with a ;.
>> 1; 2; 3

3

>> 1; 2; 3;

Inside For, While, and Do loops, Break[]
exits the loop and Continue[] continues to
the next iteration.

17

>> For[i = 1, i <= 5, i++, If[i
== 4, Break[]]; Print[i]]

1
2
3

Scoping

By default, all symbols are “global” in Math-
ics, i.e. they can be read and written in any
part of your program. However, sometimes
“local” variables are needed in order not to
disturb the global namespace. Mathics pro-
vides two ways to support this:

• lexical scoping by Module, and
• dynamic scoping by Block.

Module[{vars}, expr]
localizes variables by giving them
a temporary name of the form
name$number, where number is the
current value of $ModuleNumber.
Each time a module is evaluated,
$ModuleNumber is incremented.

Block[{vars}, expr]
temporarily stores the definitions of
certain variables, evaluates expr with
reset values and restores the original
definitions afterwards.

Both scoping constructs shield inner vari-
ables from affecting outer ones:
>> t = 3;

>> Module[{t}, t = 2]
2

>> Block[{t}, t = 2]
2

>> t
3

Module creates new variables:
>> y = x ^ 3;

>> Module[{x = 2}, x * y]

2x3

Block does not:
>> Block[{x = 2}, x * y]

16

Thus, Block can be used to temporarily as-
sign a value to a variable:
>> expr = x ^ 2 + x;

>> Block[{x = 3}, expr]

12

>> x
x

Block can also be used to temporarily
change the value of system parameters:
>> Block[{$RecursionLimit = 30},

x = 2 x]

Recursion depth of 30 exceeded.

$Aborted

It is common to use scoping constructs for
function definitions with local variables:
>> fac[n_] := Module[{k, p}, p =

1; For[k = 1, k <= n, ++k, p
*= k]; p]

>> fac[10]
3 628 800

>> 10!
3 628 800

Formatting output

The way results are formatted for output in
Mathics is rather sophisticated, as compati-
bility to the way Mathematica® does things
is one of the design goals. It can be summed
up in the following procedure:

1. The result of the query is calculated.
2. The result is stored in Out (which % is

a shortcut for).
3. Any Format rules for the desired out-

put form are applied to the result.
In the console version of Mathics, the
result is formatted as OutputForm;
MathMLForm for the StandardForm is

18

used in the interactive Web version;
and TeXForm for the StandardForm is
used to generate the LATEX version of
this documentation.

4. MakeBoxes is applied to the formatted
result, again given either OutputForm,
MathMLForm, or TeXForm depending
on the execution context of Mathics.
This yields a new expression consist-
ing of “box constructs”.

5. The boxes are turned into an ordinary
string and displayed in the console,
sent to the browser, or written to the
documentation LATEX file.

As a consequence, there are various ways
to implement your own formatting strategy
for custom objects.
You can specify how a symbol shall be for-
matted by assigning values to Format:
>> Format[x] = "y";

>> x
y

This will apply to MathMLForm,
OutputForm, StandardForm, TeXForm, and
TraditionalForm.
>> x // InputForm

x

You can specify a specific form in the assign-
ment to Format:
>> Format[x, TeXForm] = "z";

>> x // TeXForm
\text{z}

Special formats might not be very relevant
for individual symbols, but rather for cus-
tom functions (objects):
>> Format[r[args___]] = "<an r

object>";

>> r[1, 2, 3]
<an r object>

You can use several helper functions to for-
mat expressions:

Infix[expr, op]
formats the arguments of expr with
infix operator op.

Prefix[expr, op]
formats the argument of expr with
prefix operator op.

Postfix[expr, op]
formats the argument of expr with
postfix operator op.

StringForm[form, arg1, arg2, ...]
formats arguments using a format
string.

>> Format[r[args___]] = Infix[{
args}, "~"];

>> r[1, 2, 3]
1 ∼ 2 ∼ 3

>> StringForm["‘1‘ and ‘2‘", n,
m]

n and m

There are several methods to display expres-
sions in 2-D:

Row[{...}]
displays expressions in a row.

Grid[{{...}}]
displays a matrix in two-dimensional
form.

Subscript[expr, i1, i2, ...]
displays expr with subscript indices
i1, i2, ...

Superscript[expr, exp]
displays expr with superscript (expo-
nent) exp.

>> Grid[{{a, b}, {c, d}}]

a b
c d

>> Subscript[a, 1, 2] // TeXForm

a_{1,2}

If you want even more low-level control
of how expressions are displayed, you can
override MakeBoxes:

19

>> MakeBoxes[b, StandardForm] =
"c";

>> b
c

This will even apply to TeXForm, because
TeXForm implies StandardForm:
>> b // TeXForm

c

Except some other form is applied first:
>> b // OutputForm // TeXForm

b

MakeBoxes for another form:
>> MakeBoxes[b, TeXForm] = "d";

>> b // TeXForm
d

You can cause a much bigger mess by
overriding MakeBoxes than by sticking to
Format, e.g. generate invalid XML:
>> MakeBoxes[c, MathMLForm] = "<

not closed";

>> c // MathMLForm
<not closed

However, this will not affect formatting of
expressions involving c:
>> c + 1 // MathMLForm

<math><mrow><mn>1</mn>
<mo>+</mo> <mi>c</mi>
</mrow></math>

That’s because MathMLForm will, when
not overridden for a special case, call
StandardForm first. Format will produce es-
caped output:
>> Format[d, MathMLForm] = "<not

closed";

>> d // MathMLForm
<math>
<mtext><not closed</mtext>
</math>

>> d + 1 // MathMLForm
<math><mrow>
<mn>1</mn> <mo>+</mo>
<mtext><not closed</mtext>
</mrow></math>

For instance, you can override MakeBoxes to
format lists in a different way:
>> MakeBoxes[{items___},

StandardForm] := RowBox[{"[",
Sequence @@ Riffle[MakeBoxes
/@ {items}, " "], "]"}]

>> {1, 2, 3}
[123]

However, this will not be accepted as input
to Mathics anymore:
>> [1 2 3]

Parse error at or near token [.

>> Clear[MakeBoxes]

By the way, MakeBoxes is the only built-in
symbol that is not protected by default:
>> Attributes[MakeBoxes]

{HoldAllComplete}

MakeBoxes must return a valid box con-
struct:
>> MakeBoxes[squared[args___],

StandardForm] := squared[args
] ^ 2

>> squared[1, 2]

Power[squared[1, 2], 2] is
not a valid box structure.

The desired effect can be achieved in the fol-
lowing way:
>> MakeBoxes[squared[args___],

StandardForm] :=
SuperscriptBox[RowBox[{
MakeBoxes[squared], "[",
RowBox[Riffle[MakeBoxes[#]& /
@ {args}, ","]], "]"}], 2]

>> squared[1, 2]

squared [1, 2]2

20

You can view the box structure of a format-
ted expression using ToBoxes:
>> ToBoxes[m + n]

RowBox
[
{m, +, n}

]
The list elements in this RowBox are strings,
though string delimeters are not shown in
the default output form:
>> InputForm[%]

RowBox
[
{"m", "+", "n"}

]

Graphics

Two-dimensional graphics can be created
using the function Graphics and a list of
graphics primitives. For three-dimensional
graphics see the following section. The fol-
lowing primitives are available:

Circle[{x, y}, r]
draws a circle.

Disk[{x, y}, r]
draws a filled disk.

Rectangle[{x1, y1}, {x2, y2}]
draws a filled rectangle.

Polygon[{{x1, y1}, {x2, y2}, ...}]
draws a filled polygon.

Line[{{x1, y1}, {x2, y2}, ...}]
draws a line.

Text[text, {x, y}]
draws text in a graphics.

>> Graphics[{Circle[{0, 0}, 1]}]

>> Graphics[{Line[{{0, 0}, {0,
1}, {1, 1}, {1, -1}}],
Rectangle[{0, 0}, {-1, -1}]}]

Colors can be added in the list of graphics
primitives to change the drawing color. The
following ways to specify colors are sup-
ported:

RGBColor[r, g, b]
specifies a color using red, green, and
blue.

CMYKColor[c, m, y, k]
specifies a color using cyan, magenta,
yellow, and black.

Hue[h, s, b]
specifies a color using hue, satura-
tion, and brightness.

GrayLevel[l]
specifies a color using a gray level.

All components range from 0 to 1. Each
color function can be supplied with an ad-
ditional argument specifying the desired
opacity (“alpha”) of the color. There are
many predefined colors, such as Black,
White, Red, Green, Blue, etc.

21

>> Graphics[{Red, Disk[]}]

Table of hues:
>> Graphics[Table[{Hue[h, s],

Disk[{12h, 8s}]}, {h, 0, 1,
1/6}, {s, 0, 1, 1/4}]]

Colors can be mixed and altered using the
following functions:

Blend[{color1, color2}, ratio]
mixes color1 and color2 with ratio,
where a ratio of 0 returns color1 and
a ratio of 1 returns color2.

Lighter[color]
makes color lighter (mixes it with
White).

Darker[color]
makes color darker (mixes it with
Black).

>> Graphics[{Lighter[Red], Disk
[]}]

Graphics produces a GraphicsBox:
>> Head[ToBoxes[Graphics[{Circle

[]}]]]

GraphicsBox

3D Graphics

Three-dimensional graphics are created us-
ing the function Graphics3D and a list of
3D primitives. The following primitives are
supported so far:

Polygon[{{x1, y1, z1}, {x2, y2,
z3}, ...}]

draws a filled polygon.
Line[{{x1, y1, z1}, {x2, y2, z3},
...}]

draws a line.
Point[{x1, y1, z1}]

draws a point.

22

>> Graphics3D[Polygon[{{0,0,0},
{0,1,1}, {1,0,0}}]]

Colors can also be added to three-
dimensional primitives.
>> Graphics3D[{Orange, Polygon

[{{0,0,0}, {1,1,1},
{1,0,0}}]}, Axes->True]

Graphics3D produces a Graphics3DBox:
>> Head[ToBoxes[Graphics3D[{

Polygon[]}]]]

Graphics3DBox

Plotting

Mathics can plot functions:

>> Plot[Sin[x], {x, 0, 2 Pi}]

1. 2. 3. 4. 5. 6.

−1.

−0.5

0.5

1.

You can also plot multiple functions at once:
>> Plot[{Sin[x], Cos[x], x ^ 2},

{x, -1, 1}]

−1. −0.5 0.5 1.

−0.5

0.5

1.

Two-dimensional functions can be plotted
using DensityPlot:
>> DensityPlot[x ^ 2 + 1 / y, {x

, -1, 1}, {y, 1, 4}]

You can use a custom coloring function:

23

>> DensityPlot[x ^ 2 + 1 / y, {x
, -1, 1}, {y, 1, 4},
ColorFunction -> (Blend[{Red,
Green, Blue}, #]&)]

One problem with DensityPlot is that it’s
still very slow, basically due to function
evaluation being pretty slow in general—

and DensityPlot has to evaluate a lot of
functions.
Three-dimensional plots are supported as
well:
>> Plot3D[Exp[x] Cos[y], {x, -2,

1}, {y, -Pi, 2 Pi}]

24

4. Examples

Contents

Curve sketching . . . 26 Linear algebra 26 Dice 28

Curve sketching

Let’s sketch the function
>> f[x_] := 4 x / (x ^ 2 + 3 x +

5)

The derivatives are
>> {f’[x], f’’[x], f’’’[x]} //

Together{
− 4

(
−5 + x2)(

5 + 3x + x2
)2 ,

8
(
−15− 15x + x3)(
5 + 3x + x2

)3 ,

− 24
(
−20− 60x − 30x2 + x4)(

5 + 3x + x2
)4

}

To get the extreme values of f, compute the
zeroes of the first derivatives:
>> extremes = Solve[f’[x] == 0,

x]{{
x->−

√
5
}

,
{

x->
√

5
}}

And test the second derivative:
>> f’’[x] /. extremes // N

{1.65085581947099374, −
0.0640789599668615036}

Thus, there is a local maximum at x = Sqrt
[5] and a local minimum at x = -Sqrt[5].
Compute the inflection points numerically,
choping imaginary parts close to 0:

>> inflections = Solve[f’’[x] ==
0, x] // N // Chop

{{x->− 1.08519961543710476
} , {x->4.29982702283229501} ,
{x->− 3.21462740739519024}}

Insert into the third derivative:
>> f’’’[x] /. inflections

{−3.67683091753987803,
0.00671894324917601732
, 0.694905362720454084}

Being different from 0, all three points are
actual inflection points. f is not defined
where its denominator is 0:
>> Solve[Denominator[f[x]] == 0,

x]{{
x->− 3

2
− I

2

√
11
}

,{
x->− 3

2
+

I
2

√
11
}}

These are non-real numbers, consequently
f is defined on all real numbers. The be-
haviour of f at the boundaries of its defini-
tion:
>> Limit[f[x], x -> Infinity]

0

>> Limit[f[x], x -> -Infinity]
0

Finally, let’s plot f:

25

>> Plot[f[x], {x, -8, 6}]

−8. −6. −4. −2. 2. 4. 6.

−2.5
−2.
−1.5
−1.
−0.5

0.5

Linear algebra

Let’s consider the matrix
>> A = {{1, 1, 0}, {1, 0, 1},

{0, 1, 1}};

>> MatrixForm[A] 1 1 0
1 0 1
0 1 1


We can compute its eigenvalues and eigen-
vectors:
>> Eigenvalues[A]

{2, − 1, 1}

>> Eigenvectors[A]

{{1, 1, 1} , {1, − 2, 1} , {−1, 0, 1}}

This yields the diagonalization of A:
>> T = Transpose[Eigenvectors[A

]]; MatrixForm[T] 1 1 −1
1 −2 0
1 1 1


>> Inverse[T] . A . T //

MatrixForm 2 0 0
0 −1 0
0 0 1


>> % == DiagonalMatrix[

Eigenvalues[A]]

True

We can solve linear systems:
>> LinearSolve[A, {1, 2, 3}]

{0, 1, 2}

>> A . %
{1, 2, 3}

In this case, the solution is unique:
>> NullSpace[A]

{}

Let’s consider a singular matrix:
>> B = {{1, 2, 3}, {4, 5, 6},

{7, 8, 9}};

>> MatrixRank[B]
2

>> s = LinearSolve[B, {1, 2, 3}]{
−1

3
,

2
3

, 0
}

>> NullSpace[B]

{{1, − 2, 1}}

>> B . (RandomInteger[100] *
%[[1]] + s)

{1, 2, 3}

Dice

Let’s play with dice in this example. A Dice
object shall represent the outcome of a series
of rolling a dice with six faces, e.g.:
>> Dice[1, 6, 4, 4]

Dice [1, 6, 4, 4]

Like in most games, the ordering of the in-
dividual throws does not matter. We can ex-
press this by making Dice Orderless:
>> SetAttributes[Dice, Orderless

]

>> Dice[1, 6, 4, 4]
Dice [1, 4, 4, 6]

26

A dice object shall be displayed as a rectan-
gle with the given number of points in it, po-
sitioned like on a traditional dice:
>> Format[Dice[n_Integer?(1 <= #

<= 6 &)]] := Block[{p = 0.2,
r = 0.05}, Graphics[{

EdgeForm[Black], White,
Rectangle[], Black, EdgeForm
[], If[OddQ[n], Disk[{0.5,
0.5}, r]], If[MemberQ[{2, 3,
4, 5, 6}, n], Disk[{p, p}, r
]], If[MemberQ[{2, 3, 4, 5,
6}, n], Disk[{1 - p, 1 - p},
r]], If[MemberQ[{4, 5, 6}, n
], Disk[{p, 1 - p}, r]], If[
MemberQ[{4, 5, 6}, n], Disk
[{1 - p, p}, r]], If[n === 6,
{Disk[{p, 0.5}, r], Disk[{1

- p, 0.5}, r]}]}, ImageSize
-> Tiny]]

>> Dice[1]

The empty series of dice shall be displayed
as an empty dice:
>> Format[Dice[]] := Graphics[{

EdgeForm[Black], White,
Rectangle[]}, ImageSize ->
Tiny]

>> Dice[]

Any non-empty series of dice shall be dis-
played as a row of individual dice:
>> Format[Dice[d___Integer?(1 <=

<= 6 &)]] := Row[Dice /@ {
d}]

>> Dice[1, 6, 4, 4]

Note that Mathics will automatically sort the
given format rules according to their “gen-
erality”, so the rule for the empty dice does
not get overridden by the rule for a series of
dice. We can still see the original form by
using InputForm:
>> Dice[1, 6, 4, 4] // InputForm

Dice [1, 4, 4, 6]

We want to combine Dice objects using the
+ operator:
>> Dice[a___] + Dice[b___] ^:=

Dice[Sequence @@ {a, b}]

The ^:= (UpSetDelayed) tells Mathics to as-
sociate this rule with Dice instead of Plus,
which is protected—we would have to un-
protect it first:
>> Dice[a___] + Dice[b___] :=

Dice[Sequence @@ {a, b}]

Tag Plus in Dice [a___] + Dice [
b___] is Protected.

$Failed

We can now combine dice:
>> Dice[1, 5] + Dice[3, 2] +

Dice[4]

Let’s write a function that returns the sum
of the rolled dice:
>> DiceSum[Dice[d___]] := Plus

@@ {d}

>> DiceSum @ Dice[1, 2, 5]
8

And now let’s put some dice into a table:

27

>> Table[{Dice[Sequence @@ d],
DiceSum @ Dice[Sequence @@ d
]}, {d, {{1, 2}, {2, 2}, {2,
6}}}] // TableForm

3

4

8

It is not very sophisticated from a mathe-
matical point of view, but it’s beautiful.

28

5. Web interface

Contents

Saving and loading
worksheets . . 29

How definitions are
stored 29

Keyboard commands 29

Saving and loading worksheets

Worksheets exist in the browser window
only and are not stored on the server, by
default. To save all your queries and re-
sults, use the Save button in the menu bar.
You have to login using your email address.
If you don’t have an account yet, leave the
password field empty and a password will
be sent to you. You will remain logged in
until you press the Logout button in the up-
per right corner.
Saved worksheets can be loaded again using
the Load button. Note that worksheet names
are case-insensitive.

How definitions are stored

When you use the Web interface of Mathics,
a browser session is created. Cookies have
to be enabled to allow this. Your session
holds a key which is used to access your def-
initions that are stored in a database on the
server. As long as you don’t clear the cook-
ies in your browser, your definitions will re-
main even when you close and re-open the
browser.
This implies that you should not store sen-
sitive, private information in Mathics vari-
ables when using the online Web interface,
of course. In addition to their values be-
ing stored in a database on the server, your
queries might be saved for debugging pur-

poses. However, the fact that they are trans-
mitted over plain HTTP should make you
aware that you should not transmit any sen-
sitive information. When you want to do
calculations with that kind of stuff, simply
install Mathics locally!
When you use Mathics on a public terminal,
use the command Quit[] to erase all your
definitions and close the browser window.

Keyboard commands

There are some keyboard commands you
can use in the web interface of Mathics.

Shift+Return
Evaluate current cell (the most im-
portant one, for sure)

Ctrl+D
Focus documentation search

Ctrl+C
Back to document code

Ctrl+S
Save worksheet

Ctrl+O
Open worksheet

Unfortunately, keyboard commands do not
work as expected in all browsers and under
all operating systems. Often, they are only
recognized when a textfield has focus; oth-
erwise, the browser might do some browser-
specific actions, like setting a bookmark etc.

29

6. Implementation

Contents

Developing 30
Documentation and

tests 30

Documentation
markup 31

Classes 33

Adding built-in
symbols 33

Developing

To start developing, check out the source di-
rectory. Run

$ python setup.py develop

This will temporarily overwrite the installed
package in your Python library with a link
to the current source directory. In addition,
you might want to start the Django develop-
ment server with

$ python manage.py runserver

It will restart automatically when you make
changes to the source code. Don’t forget to
initalize the database first by running

$ python setup.py initialize

Documentation and tests

One of the greatest features of Mathics is its
integrated documentation and test system.
Tests can be included right in the code as
Python docstrings. All desired functionality
should be covered by these tests to ensure
that changes to the code don’t break it. Exe-
cute

$ python test.py

to run all tests.
During a test run, the results of tests can
be stored for the documentation, both in
MathML and LATEX form, by executing

$ python test.py -o

The XML version of the documentation,
which can be accessed in the Web interface,
is updated immediately. To produce the
LATEX documentation file, run:

$ python test.py -t

You can then create the PDF using LATEX. All
required steps can be executed by

$ make latex

in the doc/tex directory, which uses
latexmk to build the LATEX document. You
just have to adjust the Makefile and
latexmkrc to your environment. You need
the Asymptote (version 2 at least) to gener-
ate the graphics in the documentation.
You can also run the tests for individual
built-in symbols using

python test.py -s [name]

This will not re-create the corresponding
documentation results, however. You have
to run a complete test to do that.

Documentation markup

There is a lot of special markup syntax you
can use in the documentation. It is kind of a
mixture of XML, LATEX, Python doctest, and
custom markup.
The following commands can be used to
specify test cases.

30

>> query
a test query.

: message
a message in the result of the test
query.

| print
a printed line in the result of the test
query.

= result
the actual result of the test query.

. newline
a newline in the test result.

$identifier$
a variable identifier in Mathics code
or in text.

#> query
a test query that is not shown in the
documentation.

-Graphics-
graphics in the test result.

...
a part of the test result which is not
checked in the test, e.g., for random-
ized or system-dependent output.

The following commands can be used to
markup documentation text.

comment
a comment line that is not shown in
the documentation.

<dl>list</dl>
a definition list with <dt> and <dd>
entries.

<dt>title
the title of a description item.

<dd>description
the description of a description item.

list
an unordered list with entries.

list
an ordered list with entries.

item
an item of an unordered or ordered
list.

’code’
inline Mathics code or other code.

<console>text</console>
a console (shell/bash/Terminal)
transcript in its own paragraph.

<con>text</con>
an inline console transcript.

text
emphasized (italic) text.

<url>url</url>
a URL.

<img src="src" title="title" label="
label">

an image.
<ref label="label">

a reference to an image.
\skip

a vertical skip.
\LaTeX, \Mathematica, \Mathics

special product and company names.
\’

a single ’.

To include images in the documentation,
use the img tag, place an EPS file src.eps in
documentation/images and run images.sh
in the doc directory.

31

Figure 6.1.: UML class diagram

32

Classes

A UML diagram of the most important
classes in Mathics can be seen in figure 6.1.

Adding built-in symbols

Adding new built-in symbols to Mathics is
very easy. Either place a new module in the
builtin directory and add it to the list of
modules in builtin/__init__.py or use an
existing module. Create a new class derived
from Builtin. If you want to add an opera-
tor, you should use one of the subclasses of
Operator. Use SympyFunction for symbols
that have a special meaning in SymPy.
To get an idea of how a built-in class can
look like, consider the following implemen-
tation of If:
class If(Builtin):

"""
<dl >
<dt >’If[$cond$, pos , neg]’

<dd > returns pos if $cond$ evaluates
to ’True ’, and neg if it

evaluates to ’False ’.
<dt >’If[$cond$, pos , neg , $other$]’

<dd > returns $other$ if $cond$
evaluates to neither ’True ’ nor ’
False ’.

<dt >’If[$cond$, pos]’
<dd > returns ’Null ’ if $cond$

evaluates to ’False ’.
</dl >
>> If[1<2, a, b]

= a
If the second branch is not specified ,

’Null ’ is taken :
>> If[1<2, a]

= a
>> If[False , a] // FullForm

= Null

You might use comments (inside ’(*’ and
’*) ’) to make the branches of ’If ’
more readable :

>> If[a, (* then *) b, (* else *) c];
"""

attributes = [’HoldRest ’]

rules = {
’If[condition_ , t_]’: ’If[condition ,

t, Null]’,
}

def apply_3 (self , condition , t, f,
evaluation):

’If[condition_ , t_ , f_]’

if condition == Symbol (’True ’):
return t. evaluate (evaluation)

elif condition == Symbol (’False ’):
return f. evaluate (evaluation)

def apply_4 (self , condition , t, f, u,
evaluation):

’If[condition_ , t_ , f_ , u_]’

if condition == Symbol (’True ’):
return t. evaluate (evaluation)

elif condition == Symbol (’False ’):
return f. evaluate (evaluation)

else :
return u. evaluate (evaluation)

The class starts with a Python docstring that
specifies the documentation and tests for the
symbol. A list (or tuple) attributes can
be used to assign attributes to the symbol.
Protected is assigned by default. A dictio-
nary rules can be used to add custom rules
that should be applied.
Python functions starting with apply are
converted to built-in rules. Their docstring
is compiled to the corresponding Math-
ics pattern. Pattern variables used in the
pattern are passed to the Python function
by their same name, plus an additional
evaluation object. This object is needed
to evaluate further expressions, print mes-
sages in the Python code, etc. Unsurpris-
ingly, the return value of the Python func-
tion is the expression which is replaced for
the matched pattern. If the function does
not return any value, the Mathics expression
is left unchanged. Note that you have to
return Symbol[‘‘Null’]’ explicitely if you
want that.

33

Part II.

Reference of built-in symbols

34

I. Algebra

Contents

Apart 35
Cancel 35
Denominator 36
Expand 36

Factor 36
Numerator 36
PowerExpand 37
Simplify 37

Together 37
Variables 37

Apart

Apart[expr]
writes expr as sum of individual frac-
tions.

Apart[expr, var]
treats var as main variable.

>> Apart[1 / (x^2 + 5x + 6)]

1
2 + x

− 1
3 + x

When several variables are involved, the re-
sults can be different depending on the main
variable:
>> Apart[1 / (x^2 - y^2), x]

− 1
2y
(
x + y

) +
1

2y
(

x − y
)

>> Apart[1 / (x^2 - y^2), y]

1
2x
(

x + y
) +

1
2x
(

x − y
)

Apart is Listable:
>> Apart[{1 / (x^2 + 5x + 6)}]{

1
2 + x

− 1
3 + x

}
But it does not touch other expressions:

>> Sin[1 / (x ^ 2 - y ^ 2)] //
Apart

Sin
[

1
x2 − y2

]

Cancel

Cancel[expr]
cancels out common factors in nu-
merators and denominators.

>> Cancel[x / x ^ 2]
1
x

Cancel threads over sums:
>> Cancel[x / x ^ 2 + y / y ^ 2]

1
x

+
1
y

>> Cancel[f[x] / x + x * f[x] /
x ^ 2]

2 f [x]
x

35

Denominator

Denominator[expr]
gives the denominator in expr.

>> Denominator[a / b]
b

>> Denominator[2 / 3]
3

>> Denominator[a + b]
1

Expand

Expand[expr]
expands out positive integer powers
and products of sums in expr.

>> Expand[(x + y)^ 3]

x3 + 3x2y + 3xy2 + y3

>> Expand[(a + b)(a + c + d)]

a2 + ab + ac + ad + bc + bd

>> Expand[(a + b)(a + c + d)(e +
f)+ e a a]

2a2e + a2 f + abe + ab f + ace + ac f
+ ade + ad f + bce + bc f + bde + bd f

>> Expand[(a + b)^ 2 * (c + d)]

a2c + a2d + 2abc + 2abd + b2c + b2d

>> Expand[(x + y)^ 2 + x y]

x2 + 3xy + y2

>> Expand[((a + b)(c + d))^ 2 +
b (1 + a)]

a2c2 + 2a2cd + a2d2 + b + ab
+ 2abc2 + 4abcd + 2abd2

+ b2c2 + 2b2cd + b2d2

Expand expands items in lists and rules:

>> Expand[{4 (x + y), 2 (x + y)
-> 4 (x + y)}]

{4x + 4y, 2x + 2y->4x + 4y}

Expand does not change any other expres-
sion.
>> Expand[Sin[x (1 + y)]]

Sin
[
x
(
1 + y

)]

Factor

Factor[expr]
factors the polynomial expression
expr.

>> Factor[x ^ 2 + 2 x + 1]

(1 + x)2

>> Factor[1 / (x^2+2x+1)+ 1 / (x
^4+2x^2+1)]

2 + 2x + 3x2 + x4

(1 + x)2 (1 + x2
)2

Numerator

Numerator[expr]
gives the numerator in expr.

>> Numerator[a / b]
a

>> Numerator[2 / 3]
2

>> Numerator[a + b]
a + b

PowerExpand

PowerExpand[expr]
expands out powers of the form (x^y
)^z and (x*y)^z in expr.

36

>> PowerExpand[(a ^ b)^ c]

abc

>> PowerExpand[(a * b)^ c]

acbc

PowerExpand is not correct without certain
assumptions:
>> PowerExpand[(x ^ 2)^ (1/2)]

x

Simplify

Simplify[expr]
simplifies expr.

>> Simplify[2*Sin[x]^2 + 2*Cos[x
]^2]

2

>> Simplify[x]
x

>> Simplify[f[x]]

f [x]

Together

Together[expr]
writes sums of fractions in expr to-
gether.

>> Together[a / c + b / c]

a + b
c

Together operates on lists:
>> Together[{x / (y+1)+ x / (y

+1)^2}]{
x
(
2 + y

)(
1 + y

)2

}

But it does not touch other functions:

>> Together[f[a / c + b / c]]

f
[

a
c

+
b
c

]

Variables

Variables[expr]
gives a list of the variables that ap-
pear in the polynomial expr.

>> Variables[a x^2 + b x + c]
{a, b, c, x}

>> Variables[{a + b x, c y^2 + x
/2}]

{a, b, c, x, y}

>> Variables[x + Sin[y]]{
x, Sin

[
y
]}

37

II. Arithmetic functions

Basic arithmetic functions, including complex number arithmetic.

Contents

Abs 38
ComplexInfinity . . 39
Complex 39
DirectedInfinity . . . 39
Divide (/) 40
ExactNumberQ . . . 40
Factorial (!) 40
Gamma 40
HarmonicNumber . 41
I 41

Im 41
InexactNumberQ . . 41
Infinity 41
IntegerQ 42
Integer 42
Minus (-) 42
NumberQ 42
Piecewise 42
Plus (+) 43
Pochhammer 43
Power (^) 43

PrePlus (+) 44
Product 44
Rational 44
Re 44
RealNumberQ 45
Real 45
Sqrt 45
Subtract (-) 45
Sum 46
Times (*) 46

Abs

Abs[x]
returns the absolute value of x.

>> Abs[-3]
3

Abs returns the magnitude of complex num-
bers:
>> Abs[3 + I]√

10

>> Abs[3.0 + I]
3.16227766016837933

>> Plot[Abs[x], {x, -4, 4}]

−4. −2. 2. 4.

1.

2.

3.

4.

ComplexInfinity

ComplexInfinity
represents an infinite complex quan-
tity of undetermined direction.

>> 1 / ComplexInfinity
0

38

>> ComplexInfinity +
ComplexInfinity

ComplexInfinity

>> ComplexInfinity * Infinity

ComplexInfinity

>> FullForm[ComplexInfinity]

DirectedInfinity []

Complex

Complex
is the head of complex numbers.

Complex[a, b]
constructs the complex number a +
I b.

>> Head[2 + 3*I]
Complex

>> Complex[1, 2/3]

1 +
2I
3

>> Abs[Complex[3, 4]]
5

DirectedInfinity

DirectedInfinity[z]
represents an infinite multiple of the
complex number z.

DirectedInfinity[]
is the same as ComplexInfinity.

>> DirectedInfinity[1]
∞

>> DirectedInfinity[]

ComplexInfinity

>> DirectedInfinity[1 + I](
1
2

+
I
2

)√
2∞

>> 1 / DirectedInfinity[1 + I]
0

>> DirectedInfinity[1] +
DirectedInfinity[-1]

Indeterminate expression
−∞ + ∞ encountered.

Indeterminate

Divide (/)

Divide[a, b]</dt> <dt>a / b
represents the division of a by b.

>> 30 / 5
6

>> 1 / 8
1
8

>> Pi / 4
Pi
4

Use N or a decimal point to force numeric
evaluation:
>> Pi / 4.0

0.78539816339744831

>> 1 / 8
1
8

>> N[%]
0.125

Nested divisions:
>> a / b / c

a
bc

39

>> a / (b / c)
ac
b

>> a / b / (c / (d / e))
ad
bce

>> a / (b ^ 2 * c ^ 3 / e)
ae

b2c3

ExactNumberQ

ExactNumberQ[expr]
returns True if expr is an exact num-
ber, and False otherwise.

>> ExactNumberQ[10]
True

>> ExactNumberQ[4.0]
False

>> ExactNumberQ[n]
False

ExactNumberQ can be applied to complex
numbers:
>> ExactNumberQ[1 + I]

True

>> ExactNumberQ[1 + 1. I]
False

Factorial (!)

Factorial[n]</dt> <dt>n!
computes the factorial of n.

>> 20!
2 432 902 008 176 640 000

Factorial handles numeric (real and com-
plex) values using the gamma function:

>> 10.5!

1.18994230839622485× 107

>> (-3.0+1.5*I)!
0.0427943437183768611−

0.00461565252860394996I

However, the value at poles is
ComplexInfinity:
>> (-1.)!

ComplexInfinity

Factorial has the same operator (!) as Not,
but with higher precedence:
>> !a! //FullForm

Not [Factorial [a]]

Gamma

Gamma[z]
is the Gamma function on the com-
plex number z.

>> Gamma[8]
5 040

>> Gamma[1. + I]
0.498015668118356043−

0.154949828301810685I

Both Gamma and Factorial functions are
continuous:
>> Plot[{Gamma[x], x!}, {x, 0,

4}]

1. 2. 3. 4.

4.
6.
8.
10.
12.

40

HarmonicNumber

HarmonicNumber[n]
returns the nth harmonic number.

>> Table[HarmonicNumber[n], {n,
8}]{

1,
3
2

,
11
6

,
25
12

,
137
60

,
49
20

,
363
140

,
761
280

}
>> HarmonicNumber[3.8]

2.0380634056306492

I

I
represents the imaginary number
Sqrt[-1].

>> I^2
−1

>> (3+I)*(3-I)
10

Im

Im[z]
returns the imaginary component of
the complex number z.

>> Im[3+4I]
4

>> Plot[{Sin[a], Im[E^(I a)]}, {
a, 0, 2 Pi}]

1. 2. 3. 4. 5. 6.

−1.

−0.5

0.5

1.

InexactNumberQ

InexactNumberQ[expr]
returns True if expr is not an exact
number, and False otherwise.

>> InexactNumberQ[a]
False

>> InexactNumberQ[3.0]
True

>> InexactNumberQ[2/3]
False

InexactNumberQ can be applied to complex
numbers:
>> InexactNumberQ[4.0+I]

True

Infinity

Infinity
represents an infinite real quantity.

>> 1 / Infinity
0

>> Infinity + 100
∞

Use Infinity in sum and limit calculations:
>> Sum[1/x^2, {x, 1, Infinity}]

Pi2

6

IntegerQ

IntegerQ[expr]
returns True if expr is an integer, and
False otherwise.

>> IntegerQ[3]

True

41

>> IntegerQ[Pi]

False

Integer

Integer
is the head of integers.

>> Head[5]
Integer

Minus (-)

Minus[expr]
is the negation of expr.

>> -a //FullForm
Times [− 1, a]

Minus automatically distributes:
>> -(x - 2/3)

2
3
− x

Minus threads over lists:
>> -Range[10]

{−1, − 2, − 3, − 4, − 5,
− 6, − 7, − 8, − 9, − 10}

NumberQ

NumberQ[expr]
returns True if expr is an explicit
number, and False otherwise.

>> NumberQ[3+I]
True

>> NumberQ[5!]
True

>> NumberQ[Pi]
False

Piecewise

Picewise[{{expr1, cond1}, ...}]
represents a piecewise function.

Picewise[{{expr1, cond1}, ...},
expr]

represents a piecewise function with
default expr.

Heaviside function
>> Piecewise[{{0, x <= 0}}, 1]

Piecewise
[
{{0, x<=0}} , 1

]

Plus (+)

Plus[a, b, ...]</dt> <dt>a + b + ...
represents the sum of the terms a, b,
...

>> 1 + 2
3

Plus performs basic simplification of terms:
>> a + b + a

2a + b

>> a + a + 3 * a
5a

>> a + b + 4.5 + a + b + a + 2 +
1.5 b

6.5 + 3.a + 3.5b

Apply Plus on a list to sum up its elements:
>> Plus @@ {2, 4, 6}

12

The sum of the first 1000 integers:
>> Plus @@ Range[1000]

500 500

Plus has default value 0:
>> DefaultValues[Plus]

{HoldPattern [Default [Plus]] :>0}

42

>> a /. n_. + x_ :> {n, x}

{0, a}

The sum of 2 red circles and 3 red circles is...
>> 2 Graphics[{Red,Disk[]}] + 3

Graphics[{Red,Disk[]}]

5

Pochhammer

Pochhammer[a, n]
is the Pochhammer symbol (a)_n.

>> Pochhammer[4, 8]
6 652 800

Power (^)

Power[a, b]</dt> <dt>a ^ b
represents a raised to the power of b.

>> 4 ^ (1/2)
2

>> 4 ^ (1/3)

2
2
3

>> 3^123
48 519 278 097 689 642 681 ˜

˜155 855 396 759 336 072 ˜
˜749 841 943 521 979 872 827

>> (y ^ 2)^ (1/2)√
y2

>> (y ^ 2)^ 3

y6

>> Plot[Evaluate[Table[x^y, {y,
1, 5}]], {x, -1.5, 1.5},
AspectRatio -> 1]

−1.5−1.−0.5 0.5 1. 1.5

−3.

−2.

−1.

1.

2.

3.

Use a decimal point to force numeric evalu-
ation:
>> 4.0 ^ (1/3)

1.58740105196819947

Power has default value 1 for its second ar-
gument:
>> DefaultValues[Power]

{HoldPattern [Default [
Power, 2]] :>1}

>> a /. x_ ^ n_. :> {x, n}

{a, 1}

Power can be used with complex numbers:
>> (1.5 + 1.0 I)^ 3.5

−3.68294005782191823
+ 6.9513926640285049I

>> (1.5 + 1.0 I)^ (3.5 + 1.5 I)
−3.19181629045628082

+ 0.645658509416156807I

PrePlus (+)

Hack to help the parser distinguish between
binary and unary Plus.
>> +a //FullForm

a

43

Product

Product[expr, {i, imin, imax}]
evaluates the discrete product of expr
with i ranging from imin to imax.

Product[expr, {i, imax}]
same as Product[expr, {i, 1,
imax}].

Product[expr, {i, imin, imax, di}]
i ranges from imin to imax in steps of
di.

Product[expr, {i, imin, imax}, {j,
jmin, jmax}, ...]

evaluates expr as a multiple prod-
uct, with {i, ...}, {j, ...}, ... being in
outermost-to-innermost order.

>> Product[k, {k, 1, 10}]
3 628 800

>> 10!
3 628 800

>> Product[x^k, {k, 2, 20, 2}]

x110

>> Product[2 ^ i, {i, 1, n}]

2
n
2 + n2

2

Symbolic products involving the factorial
are evaluated:
>> Product[k, {k, 3, n}]

n!
2

Evaluate the nth primorial:
>> primorial[0] = 1;

>> primorial[n_Integer] :=
Product[Prime[k], {k, 1, n}];

>> primorial[12]

7 420 738 134 810

Rational

Rational
is the head of rational numbers.

Rational[a, b]
constructs the rational number a / b.

>> Head[1/2]
Rational

>> Rational[1, 2]
1
2

Re

Re[z]
returns the real component of the
complex number z.

>> Re[3+4I]
3

>> Plot[{Cos[a], Re[E^(I a)]}, {
a, 0, 2 Pi}]

1. 2. 3. 4. 5. 6.

−1.

−0.5

0.5

1.

RealNumberQ

RealNumberQ[expr]
returns True if expr is an explicit
number with no imaginary compo-
nent.

>> RealNumberQ[10]
True

>> RealNumberQ[4.0]
True

44

>> RealNumberQ[1+I]
False

>> RealNumberQ[0 * I]
True

>> RealNumberQ[0.0 * I]
False

Real

Real
is the head of real (inexact) numbers.

>> x = 3. ^ -20;

>> InputForm[x]

2.86797199079244131*∧-10

>> Head[x]
Real

Sqrt

Sqrt[expr]
returns the square root of expr.

>> Sqrt[4]
2

>> Sqrt[5]
√

5

>> Sqrt[5] // N

2.2360679774997897

>> Sqrt[a]^2
a

Complex numbers:
>> Sqrt[-4]

2I

>> I == Sqrt[-1]

True

>> Plot[Sqrt[a^2], {a, -2, 2}]

−2. −1. 1. 2.

0.5

1.

1.5

2.

Subtract (-)

Subtract[a, b]</dt> <dt>a - b
represents the subtraction of b from a.

>> 5 - 3
2

>> a - b // FullForm
Plus [a, Times [− 1, b]]

>> a - b - c
a − b − c

>> a - (b - c)
a − b + c

Sum

Sum[expr, {i, imin, imax}]
evaluates the discrete sum of expr
with i ranging from imin to imax.

Sum[expr, {i, imax}]
same as Sum[expr, {i, 1, imax}].

Sum[expr, {i, imin, imax, di}]
i ranges from imin to imax in steps of
di.

Sum[expr, {i, imin, imax}, {j, jmin,
jmax}, ...]

evaluates expr as a multiple sum,
with {i, ...}, {j, ...}, ... being in
outermost-to-innermost order.

>> Sum[k, {k, 1, 10}]
55

45

Double sum:
>> Sum[i * j, {i, 1, 10}, {j, 1,

10}]

3 025

Symbolic sums are evaluated:
>> Sum[k, {k, 1, n}]

n (1 + n)
2

>> Sum[k, {k, n, 2 n}]
3n (1 + n)

2

>> Sum[k, {k, I, I + 1}]
1 + 2I

>> Sum[1 / k ^ 2, {k, 1, n}]
HarmonicNumber [n, 2]

Verify algebraic identities:
>> Sum[x ^ 2, {x, 1, y}] - y * (

y + 1)* (2 * y + 1)/ 6

0

>> (-1 + a^n)Sum[a^(k n), {k, 0,
m-1}] // Simplify

Piecewise
[{
{m, an==1} ,{

1− (an)m

1− an , True
}}]

(−1 + an)

Infinite sums:
>> Sum[1 / 2 ^ i, {i, 1,

Infinity}]

1

>> Sum[1 / k ^ 2, {k, 1,
Infinity}]

Pi2

6

Times (*)

Times[a, b, ...]</dt> <dt>a * b
* ...</dt> <dt>a b ...

represents the product of the terms a,
b, ...

>> 10 * 2
20

>> 10 2
20

>> a * a
a2

>> x ^ 10 * x ^ -2
x8

>> {1, 2, 3} * 4

{4, 8, 12}

>> Times @@ {1, 2, 3, 4}
24

>> IntegerLength[Times@@Range
[5000]]

16 326

Times has default value 1:
>> DefaultValues[Times]

{HoldPattern [Default [Times]] :>1}

>> a /. n_. * x_ :> {n, x}

{1, a}

46

III. Assignment

Contents

AddTo (+=) 47
Clear 47
ClearAll 48
Decrement (--) . . . 48
DefaultValues 48
Definition 50
DivideBy (/=) 50
DownValues 50
Increment (++) 50

Messages 51
NValues 51
OwnValues 51
PreDecrement (--) . 51
PreIncrement (++) . . 52
Quit 52
Set (=) 53
SetDelayed (:=) . . . 53
SubValues 53

SubtractFrom (-=) . . 53
TagSet 53
TagSetDelayed . . . 54
TimesBy (*=) 54
Unset (=.) 54
UpSet (^=) 54
UpSetDelayed (^:=) 55
UpValues 55

AddTo (+=)

x += dx is equivalent to x = x + dx.
>> a = 10;

>> a += 2
12

>> a
12

Clear

Clear[symb1, symb2, ...]
clears all values of the given symbols.
The arguments can also be given as
strings containing symbol names.

>> x = 2;

>> Clear[x]

>> x
x

ClearAll may not be called for Protected

symbols.
>> Clear[Sin]

Symbol Sin is Protected.

The values and rules associated with built-
in symbols will not get lost when applying
Clear (after unprotecting them):
>> Unprotect[Sin]

>> Clear[Sin]

>> Sin[Pi]
0

Clear does not remove attributes, messages,
options, and default values associated with
the symbols. Use ClearAll to do so.
>> Attributes[r] = {Flat,

Orderless};

>> Clear["r"]

>> Attributes[r]
{Flat, Orderless}

47

ClearAll

ClearAll[symb1, symb2, ...]
clears all values, attributes, messages
and options associated with the given
symbols. The arguments can also be
given as strings containing symbol
names.

>> x = 2;

>> ClearAll[x]

>> x
x

>> Attributes[r] = {Flat,
Orderless};

>> ClearAll[r]

>> Attributes[r]
{}

ClearAll may not be called for Protected
or Locked symbols.
>> Attributes[lock] = {Locked};

>> ClearAll[lock]
Symbol lock is locked.

Decrement (--)

>> a = 5;

>> a--
5

>> a
4

DefaultValues

>> Default[f, 1] = 4
4

>> DefaultValues[f]{
HoldPattern

[
Default

[
f , 1
]]

:>4
}

You can assign values to DefaultValues:
>> DefaultValues[g] = {Default[g

] -> 3};

>> Default[g, 1]
3

>> g[x_.] := {x}

>> g[a]

{a}

>> g[]

{3}

Definition

Definition[symbol]
prints as the user-defined values and
rules associated with symbol.

Definition does not print information for
ReadProtected symbols. Definition uses
InputForm to format values.
>> a = 2;

>> Definition[a]
a = 2

>> f[x_] := x ^ 2

>> g[f] ^:= 2

>> Definition[f]

f [x_] = x2

g
[

f
] ∧=2

Definition of a rather evolved (though
meaningless) symbol:
>> Attributes[r] := {Orderless}

>> Format[r[args___]] := Infix[{
args}, "~"]

48

>> N[r] := 3.5

>> Default[r, 1] := 2

>> r::msg := "My message"

>> Options[r] := {Opt -> 3}

>> r[arg_., OptionsPattern[r]]
:= {arg, OptionValue[Opt]}

Some usage:
>> r[z, x, y]

x ∼ y ∼ z

>> N[r]
3.5

>> r[]
{2, 3}

>> r[5, Opt->7]

{5, 7}

Its definition:
>> Definition[r]

Attributes [r] = {Orderless}
arg_. ∼ OptionsPattern [r]

=
{

arg, OptionValue
[
Opt

]}
N [r, MachinePrecision] = 3.5

Format
[
args___, MathMLForm

]
= Infix

[
{args} , "∼"

]
Format

[
args___, OutputForm

]
= Infix

[
{args} , "∼"

]
Format

[
args___, StandardForm

]
= Infix

[
{args} , "∼"

]
Format

[
args___,

TeXForm
]

= Infix
[
{args} , "∼"

]
Format

[
args___, TraditionalForm

]
= Infix

[
{args} , "∼"

]
Default [r, 1] = 2

Options [r] = {Opt->3}

For ReadProtected symbols, Definition
just prints attributes, default values and op-
tions:
>> SetAttributes[r,

ReadProtected]

>> Definition[r]
Attributes [r] = {Orderless,

ReadProtected}
Default [r, 1] = 2

Options [r] = {Opt->3}

This is the same for built-in symbols:
>> Definition[Plus]

Attributes [Plus] = {Flat, Listable,
NumericFunction,
OneIdentity,
Orderless,
Protected}

Default [Plus] = 0

>> Definition[Level]
Attributes [Level] = {Protected}

Options [
Level] = {Heads->False}

ReadProtected can be removed, unless the
symbol is locked:
>> ClearAttributes[r,

ReadProtected]

Clear clears values:
>> Clear[r]

>> Definition[r]
Attributes [r] = {Orderless}
Default [r, 1] = 2

Options [r] = {Opt->3}

ClearAll clears everything:
>> ClearAll[r]

>> Definition[r]
Null

49

If a symbol is not defined at all, Null is
printed:
>> Definition[x]

Null

DivideBy (/=)

x /= dx is equivalent to x = x / dx.
>> a = 10;

>> a /= 2
5

>> a
5

DownValues

DownValues[symbol] gives the list of down-
values associated with symbol.
DownValues uses HoldPattern and
RuleDelayed to protect the downvalues
from being evaluated. Moreover, it has at-
tribute HoldAll to get the specified symbol
instead of its value.
>> f[x_] := x ^ 2

>> DownValues[f]{
HoldPattern

[
f [x_]

]
:>x2}

Mathics will sort the rules you assign to a
symbol according to their specifity. If it can-
not decide which rule is more special, the
newer one will get higher precedence.
>> f[x_Integer] := 2

>> f[x_Real] := 3

>> DownValues[f]{
HoldPattern

[
f [x_Real]

]
:>3,

HoldPattern
[

f
[
x_Integer

]]
:>2,

HoldPattern
[

f [x_]
]

:>x2}
>> f[3]

2

>> f[3.]
3

>> f[a]

a2

The default order of patterns can be com-
puted using Sort with PatternsOrderedQ:
>> Sort[{x_, x_Integer},

PatternsOrderedQ]

{x_Integer, x_}

By assigning values to DownValues, you can
override the default ordering:
>> DownValues[g] := {g[x_] :> x

^ 2, g[x_Integer] :> x}

>> g[2]

4

Fibonacci numbers:
>> DownValues[fib] := {fib[0] ->

0, fib[1] -> 1, fib[n_] :>
fib[n - 1] + fib[n - 2]}

>> fib[5]
5

Increment (++)

>> a = 2;

>> a++
2

>> a
3

Grouping of Increment, PreIncrement and
Plus:
>> ++++a+++++2//Hold//FullForm

Hold [Plus [PreIncrement [
PreIncrement [Increment [
Increment [a]]]] , 2]]

50

Messages

>> a::b = "foo"
foo

>> Messages[a]

{HoldPattern [a::b] :>foo}

>> Messages[a] = {a::c :> "bar
"};

>> a::c // InputForm

"bar"

>> Message[a::c]

bar

NValues

>> NValues[a]
{}

>> N[a] = 3;

>> NValues[a]
{HoldPattern [N [a,

MachinePrecision]] :>3}

You can assign values to NValues:
>> NValues[b] := {N[b,

MachinePrecision] :> 2}

>> N[b]
2.

Be sure to use SetDelayed, otherwise the
left-hand side of the transformation rule
will be evaluated immediately, causing the
head of N to get lost. Furthermore, you
have to include the precision in the rules;
MachinePrecision will not be inserted au-
tomatically:
>> NValues[c] := {N[c] :> 3}

>> N[c]
c

Mathics will gracefully assign any list of
rules to NValues; however, inappropriate

rules will never be used:
>> NValues[d] = {foo -> bar};

>> NValues[d]
{HoldPattern [foo] :>bar}

>> N[d]
d

OwnValues

>> x = 3;

>> x = 2;

>> OwnValues[x]
{HoldPattern [x] :>2}

>> x := y

>> OwnValues[x]
{HoldPattern [x] :>y}

>> y = 5;

>> OwnValues[x]
{HoldPattern [x] :>y}

>> Hold[x] /. OwnValues[x]

Hold
[
y
]

>> Hold[x] /. OwnValues[x] //
ReleaseHold

5

PreDecrement (--)

>> a = 2;

>> --a
1

>> a
1

51

PreIncrement (++)

PreIncrement[x] or ++x
is equivalent to x = x + 1.

>> a = 2;

>> ++a
3

>> a
3

Quit

Quit removes all user-defined definitions.
>> a = 3

3

>> Quit[]

>> a
a

Quit even removes the definitions of pro-
tected and locked symbols:
>> x = 5;

>> Attributes[x] = {Locked,
Protected};

>> Quit[]

>> x
x

Set (=)

>> a = 3
3

>> a
3

>> f[x_] = x^2

x2

>> f[10]
100

You can set multiple values at once using
lists:
>> {a, b, c} = {10, 2, 3}

{10, 2, 3}

>> {a, b, {c, {d}}} = {1, 2, {{
c1, c2}, {a}}}

{1, 2, {{c1, c2} , {10}}}

>> d
10

Set evaluates its right-hand side immedi-
ately and assigns it to the left-hand side:
>> a

1

>> x = a
1

>> a = 2
2

>> x
1

Set always returns the right-hand side,
which you can again use in an assignment:
>> a = b = c = 2;

>> a == b == c == 2
True

Set supports assignments to parts:
>> A = {{1, 2}, {3, 4}};

>> A[[1, 2]] = 5
5

>> A
{{1, 5} , {3, 4}}

>> A[[;;, 2]] = {6, 7}

{6, 7}

>> A
{{1, 6} , {3, 7}}

Set a submatrix:
>> B = {{1, 2, 3}, {4, 5, 6},

{7, 8, 9}};

52

>> B[[1;;2, 2;;-1]] = {{t, u}, {
y, z}};

>> B
{{1, t, u} , {4, y, z} , {7, 8, 9}}

SetDelayed (:=)

SetDelayed has attribute HoldAll, thus it
does not evaluate the right-hand side imme-
diately, but evaluates it when needed.
>> Attributes[SetDelayed]

{HoldAll, Protected,
SequenceHold}

>> a = 1
1

>> x := a

>> a = 2
2

>> x
2

Condition can be used to make a condi-
tioned assignment:
>> f[x_] := p[x] /; x>0

>> f[3]
p [3]

>> f[-3]
f [− 3]

SubValues

>> f[1][x_] := x

>> f[2][x_] := x ^ 2

>> SubValues[f]{
HoldPattern

[
f [2] [x_]

]
:>x2,

HoldPattern
[

f [1] [x_]
]

:>x
}

>> Definition[f]

f [2] [x_] = x2

f [1] [x_] = x

SubtractFrom (-=)

x -= dx is equivalent to x = x - dx.
>> a = 10;

>> a -= 2
8

>> a
8

TagSet

TagSet[f, lhs, rhs] or f /: lhs = rhs
sets lhs to be rhs and assigns the cor-
resonding rule to the symbol f.

>> x /: f[x] = 2
2

>> f[x]
2

>> DownValues[f]
{}

>> UpValues[x]{
HoldPattern

[
f [x]

]
:>2
}

The symbol f must appear as the ultimate
head of lhs or as the head of a leaf in lhs:
>> x /: f[g[x]] = 3;

Tag x not found or too
deep for an assigned rule.

>> g /: f[g[x]] = 3;

>> f[g[x]]
3

53

TagSetDelayed

TagSetDelayed[f, lhs, rhs] or f /: lhs
:= rhs

is the delayed version of TagSet.

TimesBy (*=)

x *= dx is equivalent to x = x * dx.
>> a = 10;

>> a *= 2
20

>> a
20

Unset (=.)

>> a = 2
2

>> a =.

>> a
a

Unsetting an already unset or never defined
variable will not cause anything:
>> a =.

>> b =.

Unset can unset particular function values.
It will print a message if no corresponding
rule is found.
>> f[x_] =.

Assignment on f
for f [x_] not found.

$Failed

>> f[x_] := x ^ 2

>> f[3]
9

>> f[x_] =.

>> f[3]
f [3]

You can also unset OwnValues,
DownValues, SubValues, and UpValues di-
rectly. This is equivalent to setting them to
{}.
>> f[x_] = x; f[0] = 1;

>> DownValues[f] =.

>> f[2]
f [2]

Unset threads over lists:
>> a = b = 3;

>> {a, {b}} =.

{Null, {Null}}

UpSet (^=)

>> a[b] ^= 3;

>> DownValues[a]
{}

>> UpValues[b]

{HoldPattern [a [b]] :>3}

>> a ^= 3
Nonatomic expression expected.

3

You can use UpSet to specify special values
like format values. However, these values
will not be saved in UpValues:
>> Format[r] ^= "custom";

>> r
custom

>> UpValues[r]

{}

54

UpSetDelayed (^:=)

>> a[b] ^:= x

>> x = 2;

>> a[b]
2

>> UpValues[b]

{HoldPattern [a [b]] :>x}

UpValues

>> a + b ^= 2
2

>> UpValues[a]

{HoldPattern [a + b] :>2}

>> UpValues[b]

{HoldPattern [a + b] :>2}

You can assign values to UpValues:
>> UpValues[pi] := {Sin[pi] :>

0}

>> Sin[pi]
0

55

IV. Attributes

There are several builtin-attributes which have a predefined meaning in Mathics. However,
you can set any symbol as an attribute, in contrast to Mathematica®.

Contents

Attributes 56
ClearAttributes . . . 57
Flat 57
HoldAll 57
HoldAllComplete . . 57
HoldFirst 57

HoldRest 57
Listable 57
Locked 57
NHoldAll 57
NHoldFirst 58
NHoldRest 58
OneIdentity 58

Orderless 58
Protect 58
Protected 58
SequenceHold 59
SetAttributes 59
Unprotect 59

Attributes

>> Attributes[Plus]
{Flat, Listable,

NumericFunction, OneIdentity,
Orderless, Protected}

Attributes always considers the head of an
expression:
>> Attributes[a + b + c]

{Flat, Listable,
NumericFunction, OneIdentity,
Orderless, Protected}

You can assign values to Attributes to set
attributes:
>> Attributes[f] = {Flat,

Orderless}

{Flat, Orderless}

>> f[b, f[a, c]]
f [a, b, c]

Attributes must be symbols:

>> Attributes[f] := {a + b}
Argument a + b at position

1 is expected to be a symbol.

$Failed

Use Symbol to convert strings to symbols:
>> Attributes[f] = Symbol["

Listable"]

Listable

>> Attributes[f]
{Listable}

ClearAttributes

>> SetAttributes[f, Flat]

>> Attributes[f]
{Flat}

>> ClearAttributes[f, Flat]

>> Attributes[f]
{}

Attributes that are not even set are simply

56

ignored:
>> ClearAttributes[{f}, {Flat}]

>> Attributes[f]
{}

Flat

>> SetAttributes[f, Flat]

>> f[a, b, c] /. f[a, b] -> d
f [d, c]

HoldAll

HoldAllComplete

HoldAllComplete even prevents upval-
ues from being used, and includes
SequenceHold.
>> SetAttributes[f,

HoldAllComplete]

>> f[a] ^= 3;

>> f[a]
f [a]

>> f[Sequence[a, b]]

f
[
Sequence [a, b]

]

HoldFirst

HoldRest

Listable

>> SetAttributes[f, Listable]

>> f[{1, 2, 3}, {4, 5, 6}]

{ f [1, 4] , f [2, 5] , f [3, 6]}

>> f[{1, 2, 3}, 4]

{ f [1, 4] , f [2, 4] , f [3, 4]}

>> {{1, 2}, {3, 4}} + {5, 6}

{{6, 7} , {9, 10}}

Locked

The attributes of Locked symbols cannot be
modified:
>> Attributes[lock] = {Flat,

Locked};

>> SetAttributes[lock, {}]
Symbol lock is locked.

>> ClearAttributes[lock, Flat]
Symbol lock is locked.

>> Attributes[lock] = {}
Symbol lock is locked.

{}

>> Attributes[lock]
{Flat, Locked}

However, their values might be modified (as
long as they are not Protected too):
>> lock = 3

3

NHoldAll

>> N[f[2, 3]]
f [2., 3.]

>> SetAttributes[f, NHoldAll]

>> N[f[2, 3]]
f [2, 3]

57

NHoldFirst

NHoldRest

OneIdentity

OneIdentity affects pattern matching:
>> SetAttributes[f, OneIdentity]

>> a /. f[args___] -> {args}

{a}

It does not affect evaluation:
>> f[a]

f [a]

Orderless

>> SetAttributes[f, Orderless]

>> f[c, a, b, a + b, 3, 1.0]
f [1., 3, a, b, c, a + b]

>> SetAttributes[f, Flat]

>> f[a, b, c] /. f[a, b] -> d
f [c, d]

Protect

>> A = {1, 2, 3};

>> Protect[A]

>> A[[2]] = 4;
Symbol A is Protected.

>> A
{1, 2, 3}

Protected

Values of Protected symbols cannot be
modified:

>> Attributes[p] = {Protected};

>> p = 2;

Symbol p is Protected.

>> f[p] ^= 3;

Tag p in f
[
p
]

is Protected.

>> Format[p] = "text";

Symbol p is Protected.

However, attributes might still be set:
>> SetAttributes[p, Flat]

>> Attributes[p]

{Flat, Protected}

Thus, you can easily remove the attribute
Protected:
>> Attributes[p] = {};

>> p = 2
2

You can also use Protect or Unprotect,
resp.
>> Protect[p]

>> Attributes[p]

{Protected}

>> Unprotect[p]

If a symbol is Protected and Locked, it can
never be changed again:
>> SetAttributes[p, {Protected,

Locked}]

>> p = 2

Symbol p is Protected.

2

>> Unprotect[p]

Symbol p is locked.

58

SequenceHold

Normally, Sequence will be spliced into a
function:
>> f[Sequence[a, b]]

f [a, b]

It does not for SequenceHold functions:
>> SetAttributes[f, SequenceHold

]

>> f[Sequence[a, b]]

f
[
Sequence [a, b]

]
E.g., Set has attribute SequenceHold to al-
low assignment of sequences to variables:
>> s = Sequence[a, b];

>> s
Sequence [a, b]

>> Plus[s]
a + b

SetAttributes

>> SetAttributes[f, Flat]

>> Attributes[f]
{Flat}

>> SetAttributes[{f, g}, {Flat,
Orderless}]

>> Attributes[g]

{Flat, Orderless}

Unprotect

59

V. Calculus functions

Contents

D 61
Derivative (’) 61

FindRoot 62
Integrate 62

Limit 63
Solve 64

D

D[f, x]
gives the partial derivative of f with
respect to x.

D[f, x, y, ...]
differentiates successively with re-
spect to x, y, etc.

D[f, {x, n}]
gives the multiple derivative of order
n.

D[f, {{x1, x2, ...}}]
gives the vector derivative of f with
respect to x1, x2, etc.

>> D[x^3 + x^2, x]

2x + 3x2

>> D[y, x]
0

>> D[x, x]
1

>> D[x + y, x]

1

>> D[Sin[Cos[x]], x]
−Cos [Cos [x]] Sin [x]

>> D[Sin[x], {x, 2}]
−Sin [x]

Unknown functions are derived using
Derivative:

>> D[f[x], x]

f ′ [x]

>> D[f[x, x], x]

f (0,1) [x, x] + f (1,0) [x, x]

>> D[f[x, x], x] // InputForm

Derivative [0, 1]
[

f
]

[x, x]
+ Derivative [1, 0]

[
f
]

[x, x]

Chain rule:
>> D[f[2x+1, 2y, x+y], x]

2 f (1,0,0) [1 + 2x, 2y,

x + y
]

+ f (0,0,1) [1 + 2x, 2y, x + y
]

>> D[f[x^2, x, 2y], {x,2}, y] //
Expand

8x f (1,1,1) [x2, x, 2y
]

+ 8x2 f (2,0,1) [
x2, x, 2y

]
+ 2 f (0,2,1) [x2, x,

2y
]

+ 4 f (1,0,1) [x2, x, 2y
]

Compute the gradient vector of a function:
>> D[x ^ 3 * Cos[y], {{x, y}}]{

3x2Cos
[
y
]

, − x3Sin
[
y
]}

Hesse matrix:
>> D[Sin[x] * Cos[y], {{x,y},

2}]{{
−Cos

[
y
]

Sin [x] , − Cos [
x] Sin

[
y
]}

,
{
−Cos [x] Sin

[
y
]

, − Cos
[
y
]

Sin [x]
}}

60

Derivative (’)

Derivative[n][f]
represents the nth derivative of the
function f.

Derivative[n1, n2, ...][f]
represents a multivariate derivative.

>> Derivative[1][Sin]
Cos [#1] &

>> Derivative[3][Sin]
−Cos [#1] &

>> Derivative[2][# ^ 3&]
6#1&

Derivative can be entered using ’:
>> Sin’[x]

Cos [x]

>> (# ^ 4&)’’

12#12&

>> f’[x] // InputForm

Derivative [1]
[

f
]

[x]

>> Derivative[1][#2 Sin[#1]+Cos
[#2]&]

Cos [#1] #2&

>> Derivative[1,2][#2^3 Sin[#1]+
Cos[#2]&]

6Cos [#1] #2&

Deriving with respect to an unknown pa-
rameter yields 0:
>> Derivative[1,2,1][#2^3 Sin

[#1]+Cos[#2]&]

0&

The 0th derivative of any expression is the
expression itself:
>> Derivative[0,0,0][a+b+c]

a + b + c

You can calculate the derivative of custom
functions:

>> f[x_] := x ^ 2

>> f’[x]
2x

Unknown derivatives:
>> Derivative[2, 1][h]

h(2,1)

>> Derivative[2, 0, 1, 0][h[g]]

h
[
g
](2,0,1,0)

FindRoot

FindRoot[f, {x, x0}]
searches for a numerical root of f,
starting from x=x0.

FindRoot[lhs == rhs, {x, x0}]
tries to solve the equation lhs == rhs.

FindRoot uses Newton’s method, so the
function of interest should have a first
derivative.
>> FindRoot[Cos[x], {x, 1}]

{x->1.57079632679489662}

>> FindRoot[Sin[x] + Exp[x],{x,
0}]

{x->− 0.588532743981861077}

>> FindRoot[Sin[x] + Exp[x] ==
Pi,{x, 0}]

{x->0.866815239911458064}

FindRoot has attribute HoldAll and effec-
tively uses Block to localize x. However, in
the result x will eventually still be replaced
by its value.
>> x = 3;

>> FindRoot[Tan[x] + Sin[x] ==
Pi, {x, 1}]

{3->1.14911295431426855}

>> Clear[x]

61

FindRoot stops after 100 iterations:
>> FindRoot[x^2 + x + 1, {x, 1}]

The maximum number of
iterations was exceeded. The
result might be inaccurate.

{x->− 1.}

Find complex roots:
>> FindRoot[x ^ 2 + x + 1, {x, -

I}]

{x->− 0.5− 0.866˜
˜025403784438647I}

The function has to return numerical values:
>> FindRoot[f[x] == 0, {x, 0}]

The function value is
not a number at x = 0..

FindRoot
[

f [x]− 0, {x, 0}
]

The derivative must not be 0:
>> FindRoot[Sin[x] == x, {x, 0}]

Encountered a singular
derivative at the point x = 0..

FindRoot
[
Sin [x]− x, {x, 0}

]

Integrate

Integrate[f, x]
integrates f with respect to x. The re-
sult does not contain the additive in-
tegration constant.

Integrate[f, {x, a, b}]
computes the definite integral of f
with respect to x from a to b.

Integrate a polynomial:
>> Integrate[6 x ^ 2 + 3 x ^ 2 -

4 x + 10, x]

10x − 2x2 + 3x3

Integrate trigonometric functions:
>> Integrate[Sin[x] ^ 5, x]

−Cos [x]− Cos [x]5

5
+

2Cos [x]3

3

Definite integrals:
>> Integrate[x ^ 2 + x, {x, 1,

3}]

38
3

>> Integrate[Sin[x], {x, 0, Pi
/2}]

1

Some other integrals:
>> Integrate[1 / (1 - 4 x + x^2)

, x]

−
√

3Log
[
− 2 +

√
3 + x

]
6

+

√
3Log

[
− 2−

√
3 + x

]
6

>> Integrate[4 Sin[x] Cos[x], x]

2Sin [x]2

Integration in TeX:
>> Integrate[f[x], {x, a, b}] //

TeXForm

\int_a∧bf\left[x\right] \, dx

>> Integrate[ArcSin[x / 3], x]

xArcSin
[x

3

]
+
√

9− x2

>> Integrate[f’[x], {x, a, b}]

− f [a] + f [b]

Limit

Limit[expr, x->x0]
gives the limit of expr as x approaches
x0.

Limit[expr, x->x0, Direction->1]
approaches x0 from smaller values.

Limit[expr, x->x0, Direction->-1]
approaches x0 from larger values.

>> Limit[x, x->2]
2

62

>> Limit[Sin[x] / x, x->0]
1

>> Limit[1/x, x->0, Direction
->-1]
∞

>> Limit[1/x, x->0, Direction
->1]

−∞

Solve

Solve[equation, vars]
attempts to solve equation for the vari-
ables vars.

Solve[equation, vars, domain]
restricts variables to domain, which
can be Complexes or Reals.

>> Solve[x ^ 2 - 3 x == 4, x]

{{x->− 1} , {x->4}}

>> Solve[4 y - 8 == 0, y]

{{y->2}}

Apply the solution:
>> sol = Solve[2 x^2 - 10 x - 12

== 0, x]

{{x->− 1} , {x->6}}

>> x /. sol
{−1, 6}

Contradiction:
>> Solve[x + 1 == x, x]

{}

Tautology:
>> Solve[x ^ 2 == x ^ 2, x]

{{}}

Rational equations:
>> Solve[x / (x ^ 2 + 1)== 1, x]{{

x->
1
2
− I

2

√
3
}

,
{

x->
1
2

+
I
2

√
3
}}

>> Solve[(x^2 + 3 x + 2)/(4 x -
2)== 0, x]

{{x->− 2} , {x->− 1}}

Transcendental equations:
>> Solve[Cos[x] == 0, x]{{

x->
Pi
2

}
,
{

x->
3Pi
2

}}
Solve can only solve equations with respect
to symbols or functions:
>> Solve[f[x + y] == 3, f[x + y

]]{{
f
[
x + y

]
->3
}}

>> Solve[a + b == 2, a + b]
a + b is not a valid variable.
Solve [a + b==2, a + b]

This happens when solving with respect to
an assigned symbol:
>> x = 3;

>> Solve[x == 2, x]
3 is not a valid variable.
Solve [False, 3]

>> Clear[x]

>> Solve[a < b, a]
a < b is not a well-formed equation.

Solve [a < b, a]

Solve a system of equations:
>> eqs = {3 x ^ 2 - 3 y == 0, 3

y ^ 2 - 3 x == 0};

63

>> sol = Solve[eqs, {x, y}]{
{x->0, y->0} , {x->1, y->1} ,{

x->
(
−1

2
− I

2

√
3
)2

,

y->− 1
2
− I

2

√
3

}
,{

x->
(
−1

2
+

I
2

√
3
)2

,

y->− 1
2

+
I
2

√
3

}}

>> eqs /. sol // Simplify

{{True, True} , {True, True} ,
{True, True} , {True, True}}

An underdetermined system:
>> Solve[x^2 == 1 && z^2 == -1,

{x, y, z}]

Equations may not
give solutions for
all "solve" variables.
{{x->− 1, z->− I} ,
{x->− 1, z->I} , {x->1,
z->− I} , {x->1, z->I}}

Domain specification:
>> Solve[x^2 == -1, x, Reals]

{}

>> Solve[x^2 == 1, x, Reals]

{{x->− 1} , {x->1}}

>> Solve[x^2 == -1, x, Complexes
]

{{x->− I} , {x->I}}

64

VI. Combinatorial

Contents

Binomial 65 Fibonacci 65 Multinomial 65

Binomial

Binomial[n, k]
gives the binomial coefficient n
choose k.

>> Binomial[5, 3]
10

Binomial supports inexact numbers:
>> Binomial[10.5,3.2]

165.286109367256421

Some special cases:
>> Binomial[10, -2]

0

>> Binomial[-10.5, -3.5]
0.

>> Binomial[-10, -3.5]
ComplexInfinity

Fibonacci

Fibonacci[n]
computes the nth Fibonacci number.

>> Fibonacci[0]
0

>> Fibonacci[1]
1

>> Fibonacci[10]
55

>> Fibonacci[200]
280 571 172 992 510 140 037 ˜

˜611 932 413 038 677 189 525

Multinomial

Multinomial[n1, n2, ...]
gives the multinomial coefficient (
n1+n2+...)!/(n1!n2!...).

>> Multinomial[2, 3, 4, 5]
2 522 520

>> Multinomial[]
1

Multinomial is expressed in terms of
Binomial:
>> Multinomial[a, b, c]

Binomial [a + b,
b] Binomial [a + b + c, c]

Multinomial[n-k, k] is equivalent to
Binomial[n, k].
>> Multinomial[2, 3]

10

65

VII. Comparison

Contents

Equal (==) 66
Greater (>) 66
GreaterEqual (>=) . . 67
Inequality 67
Less (<) 67

LessEqual (<=) 67
Max 67
Min 67
Negative 67
NonNegative 67

NonPositive 67
Positive 67
SameQ (===) 67
Unequal (!=) 68
UnsameQ (=!=) . . . 68

Equal (==)

>> a==a
True

>> a==b
a==b

>> 1==1.
True

Lists are compared based on their elements:
>> {{1}, {2}} == {{1}, {2}}

True

>> {1, 2} == {1, 2, 3}
False

Real values are considered equal if they only
differ in their last digits:
>> 0.739085133215160642 ==

0.739085133215160641

True

>> 0.73908513321516064200000000
==
0.73908513321516064100000000

False

>> 0.1 ^ 10000 == 0.1 ^ 10000 +
0.1 ^ 10016

False

>> 0.1 ^ 10000 == 0.1 ^ 10000 +
0.1 ^ 10017

True

Comparisons are done using the lower pre-
cision:
>> N[E, 100] == N[E, 150]

True

Symbolic constants are compared numeri-
cally:
>> E > 1

True

>> Pi == 3.14
False

Greater (>)

>> a > b > c //FullForm
Greater [a, b, c]

>> Greater[3, 2, 1]
True

66

GreaterEqual (>=)

Inequality

Inequality is the head of expressions in-
volving different inequality operators (at
least temporarily). Thus, it is possible to
write chains of inequalities.
>> a < b <= c

a < b&&b<=c

>> Inequality[a, Greater, b,
LessEqual, c]

a > b&&b<=c

>> 1 < 2 <= 3
True

>> 1 < 2 > 0
True

>> 1 < 2 < -1
False

Less (<)

LessEqual (<=)

Max

>> Max[4, -8, 1]
4

>> Max[{1,2},3,{-3,3.5,-Infinity
},{{1/2}}]

3.5

Min

>> Min[4, -8, 1]
−8

>> Min[{1,2},3,{-3,3.5,-Infinity
},{{1/2}}]

−∞

Negative

>> Negative[-3]

True

>> Negative[10/7]

False

>> Negative[1+2I]

False

>> Negative[a+b]

False

NonNegative

NonPositive

Positive

SameQ (===)

>> a===a
True

>> 1===1
True

>> 1===1.
False

Unequal (!=)

>> 1 != 1.
False

Lists are compared based on their elements:
>> {1} != {2}

True

>> {1, 2} != {1, 2}
False

>> {a} != {a}
False

>> "a" != "b"
True

67

>> "a" != "a"
False

UnsameQ (=!=)

>> a=!=a
False

>> 1=!=1.
True

68

VIII. Control statements

Contents

Abort 69
Break 69
CompoundExpres-

sion
(;) 69

Continue 69

Do 70
FixedPoint 70
FixedPointList 71
For 71
If 71
Nest 71

NestList 72
NestWhile 72
Switch 72
Which 73
While 73

Abort

Abort[]
aborts an evaluation completely and
returns $Aborted.

>> Print["a"]; Abort[]; Print["b
"]
a
$Aborted

Break

Break[]
exits a For, While, or Do loop.

>> n = 0;

>> While[True, If[n>10, Break
[]]; n=n+1]

>> n
11

CompoundExpression (;)

CompoundExpression[e1, e2, ...] or
e1; e2; ...

evaluates its arguments in turn, re-
turning the last result.

>> a; b; c; d
d

If the last argument is omitted, Null is taken:
>> a;

Continue

Continue[]
continues with the next iteration in a
For, While, or Do loop.

>> For[i=1, i<=8, i=i+1, If[Mod[
i,2] == 0, Continue[]]; Print
[i]]

1
3
5
7

69

Do

Do[expr, {max}]
evaluates expr max times.

Do[expr, {i, max}]
evaluates expr max times, substituting
i in expr with values from 1 to max.

Do[expr, {i, min, max}]
starts with i = max.

Do[expr, {i, min, max, step}]
uses a step size of step.

Do[expr, {i, {i1, i2, ...}}]
uses values i1, i2, ... for i.

Do[expr, {i, imin, imax}, {j, jmin,
jmax}, ...]

evaluates expr for each j from jmin to
jmax, for each i from imin to imax, etc.

>> Do[Print[i], {i, 2, 4}]
2
3
4

>> Do[Print[{i, j}], {i,1,2}, {j
,3,5}]

{1, 3}
{1, 4}
{1, 5}
{2, 3}
{2, 4}
{2, 5}

You can use Break[] and Continue[] inside
Do:
>> Do[If[i > 10, Break[], If[Mod

[i, 2] == 0, Continue[]];
Print[i]], {i, 5, 20}]

5
7
9

FixedPoint

FixedPoint[f, expr]
starting with expr, iteratively applies
f until the result no longer changes.

FixedPoint[f, expr, n]
performs at most n iterations.

>> FixedPoint[Cos, 1.0]
0.739085133215160639

>> FixedPoint[#+1 &, 1, 20]
21

FixedPointList

FixedPointList[f, expr]
starting with expr, iteratively applies
f until the result no longer changes,
and returns a list of all intermediate
results.

FixedPointList[f, expr, n]
performs at most n iterations.

>> FixedPointList[Cos, 1.0, 4]

{1., 0.540302305868139˜
˜717, 0.857553215846393˜
˜416, 0.65428979049777915
, 0.793480358742565592}

Observe the convergence of Newton’s
method for approximating square roots:
>> newton[n_] := FixedPointList

[.5(# + n/#)&, 1.];

>> newton[9]
{1., 5., 3.4, 3.023529411764˜

˜70588, 3.00009155413138018
, 3.00000000139698386, 3., 3.}

Plot the “hailstone” sequence of a number:
>> collatz[1] := 1;

>> collatz[x_ ? EvenQ] := x / 2;

>> collatz[x_] := 3 x + 1;

70

>> list = FixedPointList[collatz
, 14]

{14, 7, 22, 11, 34, 17, 52, 26, 13,
40, 20, 10, 5, 16, 8, 4, 2, 1, 1}

>> ListLinePlot[list]

5. 10. 15. 20.

10.

20.

30.

40.

For

For[start, test, incr, body]
evaluates start, and then iteratively
body and incr as long as test evaluates
to True.

For[start, test, incr]
evaluates only incr and no body.

For[start, test]
runs the loop without any body.

Compute the factorial of 10 using For:
>> n := 1

>> For[i=1, i<=10, i=i+1, n = n
* i]

>> n
3 628 800

>> n == 10!
True

If

If[cond, pos, neg]
returns pos if cond evaluates to True,
and neg if it evaluates to False.

If[cond, pos, neg, other]
returns other if cond evaluates to nei-
ther True nor False.

If[cond, pos]
returns Null if cond evaluates to
False.

>> If[1<2, a, b]
a

If the second branch is not specified, Null is
taken:
>> If[1<2, a]

a

>> If[False, a] //FullForm
Null

You might use comments (inside (* and *))
to make the branches of If more readable:
>> If[a, (*then*)b, (*else*)c];

Nest

Nest[f, expr, n]
starting with expr, iteratively applies
f n times and returns the final result.

>> Nest[f, x, 3]

f
[

f
[

f [x]
]]

>> Nest[(1+#)^ 2 &, x, 2](
1 + (1 + x)2

)2

71

NestList

NestList[f, expr, n]
starting with expr, iteratively applies
f n times and returns a list of all inter-
mediate results.

>> NestList[f, x, 3]{
x, f [x] , f

[
f [x]

]
, f
[

f
[

f [x]
]]}

>> NestList[2 # &, 1, 8]

{1, 2, 4, 8, 16, 32, 64, 128, 256}

Chaos game rendition of the Sierpinski tri-
angle:
>> vertices = {{0,0}, {1,0},

{.5, .5 Sqrt[3]}};

>> points = NestList[.5(vertices
[[RandomInteger[{1,3}]]] +
#)&, {0.,0.}, 2000];

>> Graphics[Point[points],
ImageSize->Small]

NestWhile

NestWhile[f, expr, test]
applies a function f repeatedly on an
expression expr, until applying test on
the result no longer yields True.

NestWhile[f, expr, test, m]
supplies the last m results to test (de-
fault value: 1).

NestWhile[f, expr, test, All]
supplies all results gained so far to
test.

Divide by 2 until the result is no longer an
integer:

>> NestWhile[#/2&, 10000,
IntegerQ]

625
2

Switch

Switch[expr, pattern1, value1, pat-
tern2, value2, ...]

yields the first value for which $expr
matches the corresponding pattern.

>> Switch[2, 1, x, 2, y, 3, z]
y

>> Switch[5, 1, x, 2, y]

Switch
[
5, 1, x, 2, y

]
>> Switch[5, 1, x, 2, y, _, z]

z

>> Switch[2, 1]
Switch called with 2

arguments. Switch must
be called with an odd
number of arguments.

Switch [2, 1]

Which

Which[cond1, expr1, cond2, expr2,
...]

yields expr1 if cond1 evaluates to
True, expr2 if cond2 evaluates to
True, etc.

>> n = 5;

>> Which[n == 3, x, n == 5, y]
y

>> f[x_] := Which[x < 0, -x, x
== 0, 0, x > 0, x]

72

>> f[-3]
3

If no test yields True, Which returns Null:
>> Which[False, a]

Which must be called with an even number
of arguments:
>> Which[a, b, c]

Which called with 3 arguments.

Which [a, b, c]

While

While[test, body]
evaluates body as long as test evalu-
ates to True.

While[test]
runs the loop without any body.

Compute the GCD of two numbers:
>> {a, b} = {27, 6};

>> While[b != 0, {a, b} = {b,
Mod[a, b]}];

>> a
3

73

IX. Date and Time

Contents

AbsoluteTime 74
AbsoluteTiming . . 74
DateDifference . . . 75
DateList 76

DatePlus 76
DateString 76
$DateStringFormat . 77
Pause 77

SessionTime 77
TimeUsed 77
$TimeZone 77
Timing 77

AbsoluteTime

AbsoluteTime[]
gives the local time in seconds since
epoch Jan 1 1900.

AbsoluteTime[string]
gives the absolute time specification
for a given date string.

AbsoluteTime[{y, m, d, h, m, s}]
gives the absolute time specification
for a given date list.

AbsoluteTime[{‘‘string’,{’e1, e2,
...}}]

gives the absolute time specification
for a given date list with specified el-
ements ei.

>> AbsoluteTime[]

3.59192224382× 109

>> AbsoluteTime[{2000}]
3 155 673 600

>> AbsoluteTime[{"01/02/03", {"
Day", "Month", "YearShort"}}]

3 253 046 400

>> AbsoluteTime["6 June 1991"]
2 885 155 200

>> AbsoluteTime[{"6-6-91", {"Day
", "Month", "YearShort"}}]

2 885 155 200

AbsoluteTiming

AbsoluteTiming[expr]
measures the actual time it takes to
evaluate expr. It returns a list contain-
ing the measured time in seconds and
the result of the evaluation.

>> AbsoluteTiming[50!]

{0.000187873840332, 30 414 ˜
˜093 201 713 378 043 612 608 ˜
˜166 064 768 844 377 641 568 ˜
˜960 512 000 000 000 000}

>> Attributes[AbsoluteTiming]

{HoldAll, Protected}

74

DateDifference

’DateDifference[date1, date2]
difference between dates in days.

’DateDifference[date1, date2, unit]
difference between dates in specified
unit.

’DateDifference[date1, date2, {unit1, unit2,
...}]

difference between dates as a list in
the specified units.

>> DateDifference[{2042, 1, 4},
{2057, 1, 1}]

5 476

>> DateDifference[{1936, 8, 14},
{2000, 12, 1}, "Year"]

{64.3424657534, Year}

>> DateDifference[{2010, 6, 1},
{2015, 1, 1}, "Hour"]

{40 200, Hour}

>> DateDifference[{2003, 8, 11},
{2003, 10, 19}, {"Week", "

Day"}]

{{9, Week} , {6, Day}}

DateList

DateList[]
returns the current local time in the
form {year, month, day, hour, minute,
second}.

DateList[time]
returns a formatted date for the num-
ber of seconds time since epoch Jan 1
1900.

DateList[{y, m, d, h, m, s}]
converts an incomplete date list to the
standard representation.

DateString[string]
returns the formatted date list of a
date string specification.

DateString[string, {e1, e2, ...}]
returns the formatted date list of a
string obtained from elements ei.

>> DateList[0]
{1 900, 1, 1, 0, 0, 0.}

>> DateList[3155673600]
{2 000, 1, 1, 0, 0, 0.}

>> DateList[{2003, 5, 0.5, 0.1,
0.767}]

{2 003, 4, 30, 12, 6, 46.02}

>> DateList[{2012, 1, 300., 10}]

{2 012, 10, 26, 10, 0, 0.}

>> DateList["31/10/1991"]
{1 991, 10, 31, 0, 0, 0.}

>> DateList[{"31/10/91", {"Day",
"Month", "YearShort"}}]

{1 991, 10, 31, 0, 0, 0.}

>> DateList[{"31 10/91", {"Day",
" ", "Month", "/", "

YearShort"}}]

{1 991, 10, 31, 0, 0, 0.}

If not specified, the current year assumed

75

>> DateList[{"5/18", {"Month", "
Day"}}]

{2 013, 5, 18, 0, 0, 0.}

DatePlus

DatePlus[date, n]
finds the date n days after date.

DatePlus[date, {n, ‘‘unit’}]’
finds the date n units after date.

DatePlus[date, {{n1, ‘‘unit1’},
{n2, unit2}, ...}]’

finds the date which is n_i specified
units after date.

DatePlus[n]
finds the date n days after the current
date.

DatePlus[offset]
finds the date which is offset from the
current date.

Add 73 days to Feb 5, 2010:
>> DatePlus[{2010, 2, 5}, 73]

{2 010, 4, 19}

Add 8 weeks and 1 day to March 16, 1999:
>> DatePlus[{2010, 2, 5}, {{8, "

Week"}, {1, "Day"}}]

{2 010, 4, 3}

DateString

DateString[]
returns the current local time and
date as a string.

DateString[elem]
returns the time formatted according
to elems.

DateString[{e1, e2, ...}]
concatinates the time formatted ac-
cording to elements ei.

DateString[time]
returns the date string of an Abso-
luteTime.

DateString[{y, m, d, h, m, s}]
returns the date string of a date list
specification.

DateString[string]
returns the formatted date string of a
date string specification.

DateString[spec, elems]
formats the time in turns of elems.
Both spec and elems can take any of
the above formats.

The current date and time:
>> DateString[];

>> DateString[{1991, 10, 31, 0,
0}, {"Day", " ", "MonthName",
" ", "Year"}]

31 October 1 991

>> DateString[{2007, 4, 15, 0}]

Sun 15 Apr 2 007 00:00:00

>> DateString[{1979, 3, 14}, {"
DayName", " ", "Month", "-",
"YearShort"}]

Wednesday 03-79

Non-integer values are accepted too:
>> DateString[{1991, 6, 6.5}]

Thu 6 Jun 1 991 12:00:00

76

$DateStringFormat

$DateStringFormat
gives the format used for dates gen-
erated by DateString.

>> $DateStringFormat

{DateTimeShort}

Pause

Pause[n]
pauses for n seconds.

>> Pause[0.5]

SessionTime

SessionTime[]
returns the total time since this ses-
sion started.

>> SessionTime[]
328.27131319

TimeUsed

TimeUsed[]
returns the total cpu time used for
this session.

>> TimeUsed[]
327.092441

$TimeZone

$TimeZone
gives the current time zone.

>> $TimeZone
1.

Timing

Timing[expr]
measures the processor time taken to
evaluate expr. It returns a list contain-
ing the measured time in seconds and
the result of the evaluation.

>> Timing[50!]

{0., 30 414 093 201 713 378 043 ˜
˜612 608 166 064 768 844 377 641 ˜
˜568 960 512 000 000 000 000}

>> Attributes[Timing]

{HoldAll, Protected}

77

X. Differential equation solver functions

Contents

DSolve 78

DSolve

DSolve[eq, $y[x]$, x]
solves a differential equation for the
function $y[x]$.

>> DSolve[y’’[x] == 0, y[x], x]

{{y [x] ->xC [2] + C [1]}}

>> DSolve[y’’[x] == y[x], y[x],
x]{{

y [x] ->C [1] E−x + C [2] Ex}}
>> DSolve[y’’[x] == y[x], y, x]{{

y->
(
Function

[
{x} , C [

1] Exp [− x] + C [2] Exp [x]
])}}

78

XI. Evaluation

Contents

Evaluate 79
$HistoryLength . . . 79
Hold 79
HoldComplete . . . 79

HoldForm 80
In 80
$Line 80
Out 80

$RecursionLimit . . 81
ReleaseHold 81
Sequence 81
Unevaluated 81

Evaluate

>> SetAttributes[f, HoldAll]

>> f[1 + 2]
f [1 + 2]

>> f[Evaluate[1 + 2]]
f [3]

>> Hold[Evaluate[1 + 2]]
Hold [3]

>> HoldComplete[Evaluate[1 + 2]]

HoldComplete [Evaluate [1 + 2]]

>> Evaluate[Sequence[1, 2]]

Sequence [1, 2]

$HistoryLength

>> $HistoryLength

100

>> $HistoryLength = 1;

>> 42
42

>> %
42

>> %%
%3

>> $HistoryLength = 0;

>> 42
42

>> %
%7

Hold

>> Attributes[Hold]
{HoldAll, Protected}

HoldComplete

>> Attributes[HoldComplete]

{HoldAllComplete, Protected}

HoldForm

HoldForm[expr] maintains expr in an un-
evaluated form, but prints as expr.
>> HoldForm[1 + 2 + 3]

1 + 2 + 3

HoldForm has attribute HoldAll:

79

>> Attributes[HoldForm]
{HoldAll, Protected}

In

>> x = 1
1

>> x = x + 1
2

>> Do[In[2], {3}]

>> x
5

>> In[-1]
5

>> Definition[In]
Attributes [In] = {Protected}

In [6] = Definition [In]

In [5] = In [− 1]

In [4] = x

In [3] = Do
[
In [2] , {3}

]
In [2] = x = x + 1

In [1] = x = 1

$Line

>> $Line
1

>> $Line
2

>> $Line = 12;

>> 2 * 5
10

>> Out[13]
10

>> $Line = -1;
Non-negative integer expected.

Out

Out[k] or %k
gives the result of the kth input line.

%, %%, etc.
gives the result of the previous input
line, of the line before the previous in-
put line, etc.

>> 42
42

>> %
42

>> 43;

>> %

>> 44
44

>> %1
42

>> %%
44

>> Hold[Out[-1]]
Hold [%]

>> Hold[%4]
Hold [%4]

>> Out[0]
Out [0]

$RecursionLimit

>> a = a + a
Recursion depth of 200 exceeded.

$Aborted

>> $RecursionLimit
200

80

>> $RecursionLimit = x;
Cannot set $RecursionLimit

to x; value must be an
integer between 20 and 512.

>> $RecursionLimit = 512
512

>> a = a + a
Recursion depth of 512 exceeded.

$Aborted

ReleaseHold

ReleaseHold[expr]
removes any Hold, HoldForm,
HoldPattern or HoldComplete head
from expr.

>> x = 3;

>> Hold[x]
Hold [x]

>> ReleaseHold[Hold[x]]
3

>> ReleaseHold[y]
y

Sequence

Sequence[x1, x2, ...]
represents a sequence of arguments
to a function.

Sequence is automatically spliced in, except
when a function has attribute SequenceHold
(like assignment functions).
>> f[x, Sequence[a, b], y]

f
[
x, a, b, y

]
>> Attributes[Set]

{HoldFirst, Protected,
SequenceHold}

>> a = Sequence[b, c];

>> a
Sequence [b, c]

Apply Sequence to a list to splice in argu-
ments:
>> list = {1, 2, 3};

>> f[Sequence @@ list]

f [1, 2, 3]

Unevaluated

>> Length[Unevaluated[1+2+3+4]]

4

Unevaluated has attribute HoldAllComplete:
>> Attributes[Unevaluated]

{HoldAllComplete, Protected}

Unevaluated is maintained for arguments to
non-executed functions:
>> f[Unevaluated[x]]

f [Unevaluated [x]]

Likewise, its kept in flattened arguments
and sequences:
>> Attributes[f] = {Flat};

>> f[a, Unevaluated[f[b, c]]]
f [a, Unevaluated [

b] , Unevaluated [c]]

>> g[a, Sequence[Unevaluated[b],
Unevaluated[c]]]

g [a, Unevaluated [
b] , Unevaluated [c]]

However, unevaluated sequences are kept:
>> g[Unevaluated[Sequence[a, b,

c]]]

g
[
Unevaluated

[
Sequence [a, b, c]

]]

81

XII. Exponential, trigonometric and hyperbolic
functions

Mathics basically supports all important trigonometric and hyperbolic functions. Numerical
values and derivatives can be computed; however, most special exact values and simplification
rules are not implemented yet.

Contents

ArcCos 82
ArcCosh 82
ArcCot 83
ArcCoth 83
ArcCsc 83
ArcCsch 83
ArcSec 83
ArcSech 83
ArcSin 84
ArcSinh 84

ArcTan 84
ArcTanh 84
Cos 84
Cosh 84
Cot 85
Coth 85
Csc 85
Csch 85
E 85
Exp 85
GoldenRatio 86

Log 86
Log10 86
Log2 86
Pi 86
Sec 87
Sech 87
Sin 87
Sinh 87
Tan 87
Tanh 87

ArcCos

ArcCos[z]
returns the inverse cosine of z.

>> ArcCos[1]
0

>> ArcCos[0]
Pi
2

>> Integrate[ArcCos[x], {x, -1,
1}]

Pi

ArcCosh

ArcCosh[z]
returns the inverse hyperbolic cosine
of z.

>> ArcCosh[0]
I
2

Pi

>> ArcCosh[0.]
0. + 1.57079632679489662I

>> ArcCosh
[0.00000000000000000000000000000000000000]

0. + 1.570796326794896˜
˜6191479842624545426588I

82

ArcCot

ArcCot[z]
returns the inverse cotangent of z.

>> ArcCot[0]
Pi
2

>> ArcCot[1]
Pi
4

ArcCoth

ArcCoth[z]
returns the inverse hyperbolic cotan-
gent of z.

>> ArcCoth[0]
I
2

Pi

>> ArcCoth[1]
∞

>> ArcCoth[0.0]
0. + 1.57079632679489662I

>> ArcCoth[0.5]
0.549306144334054846
− 1.57079632679489662I

ArcCsc

ArcCsc[z]
returns the inverse cosecant of z.

>> ArcCsc[1]
Pi
2

>> ArcCsc[-1]

−Pi
2

ArcCsch

ArcCsch[z]
returns the inverse hyperbolic cose-
cant of z.

>> ArcCsch[0]
ComplexInfinity

>> ArcCsch[1.0]
0.881373587019543025

ArcSec

ArcSec[z]
returns the inverse secant of z.

>> ArcSec[1]
0

>> ArcSec[-1]
Pi

ArcSech

ArcSech[z]
returns the inverse hyperbolic secant
of z.

>> ArcSech[0]
∞

>> ArcSech[1]
0

>> ArcSech[0.5]
1.31695789692481671

ArcSin

ArcSin[z]
returns the inverse sine of z.

83

>> ArcSin[0]
0

>> ArcSin[1]
Pi
2

ArcSinh

ArcSinh[z]
returns the inverse hyperbolic sine of
z.

>> ArcSinh[0]
0

>> ArcSinh[0.]
0.

>> ArcSinh[1.0]
0.881373587019543025

ArcTan

ArcTan[z]
returns the inverse tangent of z.

>> ArcTan[1]
Pi
4

>> ArcTan[1.0]
0.78539816339744831

>> ArcTan[-1.0]
−0.78539816339744831

>> ArcTan[1, 1]
Pi
4

ArcTanh

ArcTanh[z]
returns the inverse hyperbolic tan-
gent of z.

>> ArcTanh[0]
0

>> ArcTanh[1]
∞

>> ArcTanh[0]
0

>> ArcTanh[.5 + 2 I]
0.0964156202029961672

+ 1.12655644083482235I

>> ArcTanh[2 + I]
ArcTanh [2 + I]

Cos

Cos[z]
returns the cosine of z.

>> Cos[3 Pi]
−1

Cosh

Cosh[z]
returns the hyperbolic cosine of z.

>> Cosh[0]
1

Cot

Cot[z]
returns the cotangent of z.

84

>> Cot[0]
ComplexInfinity

>> Cot[1.]
0.642092615934330703

Coth

Coth[z]
returns the hyperbolic cotangent of z.

>> Coth[0]
ComplexInfinity

Csc

Csc[z]
returns the cosecant of z.

>> Csc[0]
ComplexInfinity

>> Csc[1] (* Csc[1] in
Mathematica *)

1
Sin [1]

>> Csc[1.]
1.18839510577812122

Csch

Csch[z]
returns the hyperbolic cosecant of z.

>> Csch[0]
ComplexInfinity

E

E
is the constant e.

>> N[E]
2.71828182845904524

>> N[E, 50]
2.718281828459045235360˜

˜2874713526624977572470937

>> Attributes[E]
{Constant, Protected,

ReadProtected}

Exp

Exp[z]
returns the exponential function of z.

>> Exp[1]

E

>> Exp[10.0]

22 026.4657948067169

>> Exp[x] //FullForm

Power [E, x]

>> Plot[Exp[x], {x, 0, 3}]

0.5 1. 1.5 2. 2.5 3.

5.

10.

15.

GoldenRatio

GoldenRatio
is the golden ratio.

85

>> N[GoldenRatio]
1.61803398874989485

Log

Log[z]
returns the natural logarithm of z.

>> Log[{0, 1, E, E * E, E ^ 3, E
^ x}]{
−∞, 0, 1, 2, 3, Log

[
Ex]}

>> Log[0.]

Indeterminate

>> Plot[Log[x], {x, 0, 5}]

1. 2. 3. 4. 5.

−1.
−0.5

0.5
1.
1.5

Log10

Log10[z]
returns the base-10 logarithm of z.

>> Log10[1000]
3

>> Log10[{2., 5.}]

{0.301029995663981195,
0.698970004336018805}

>> Log10[E ^ 3]
3

Log [10]

Log2

Log2[z]
returns the base-2 logarithm of z.

>> Log2[4 ^ 8]

16

>> Log2[5.6]

2.48542682717024176

>> Log2[E ^ 2]
2

Log [2]

Pi

Pi
is the constant π.

>> N[Pi]
3.14159265358979324

>> N[Pi, 50]
3.141592653589793238462643˜

˜3832795028841971693993751

>> Attributes[Pi]
{Constant, Protected,

ReadProtected}

Sec

Sec[z]
returns the secant of z.

>> Sec[0]
1

>> Sec[1] (* Sec[1] in
Mathematica *)

1
Cos [1]

86

>> Sec[1.]
1.85081571768092562

Sech

Sech[z]
returns the hyperbolic secant of z.

>> Sech[0]
1

Sin

Sin[z]
returns the sine of z.

>> Sin[0]
0

>> Sin[0.5]
0.479425538604203

>> Sin[3 Pi]
0

>> Sin[1.0 + I]
1.29845758141597729 +

0.634963914784736108I

>> Plot[Sin[x], {x, -Pi, Pi}]

−3. −2. −1. 1. 2. 3.

−1.

−0.5

0.5

1.

Sinh

Sinh[z]
returns the hyperbolic sine of z.

>> Sinh[0]
0

Tan

Tan[z]
returns the tangent of z.

>> Tan[0]
0

>> Tan[Pi / 2]
ComplexInfinity

Tanh

Tanh[z]
returns the hyperbolic tangent of z.

>> Tanh[0]
0

87

XIII. Functional programming

Contents

Composition 88
Function (&) 89

Identity 89
Slot 89

SlotSequence 89

Composition

Composition[f, g]
returns the composition of two func-
tions f and g.

>> Composition[f, g][x]

f
[
g [x]

]
>> Composition[f, g, h][x, y, z]

f
[
g
[
h
[
x, y, z

]]]
>> Composition[]

Identity

>> Composition[][x]
x

>> Attributes[Composition]

{Flat, OneIdentity, Protected}

>> Composition[f, Composition[g,
h]]

Composition
[

f , g, h
]

Function (&)

Function[body] or body &
represents a pure function with pa-
rameters #1, #2, etc.

Function[{x1, x2, ...}, body]
represents a pure function with pa-
rameters x1, x2, etc.

>> f := # ^ 2 &

>> f[3]
9

>> #^3& /@ {1, 2, 3}

{1, 8, 27}

>> #1+#2&[4, 5]
9

You can use Function with named parame-
ters:
>> Function[{x, y}, x * y][2, 3]

6

Parameters are renamed, when necessary, to
avoid confusion:
>> Function[{x}, Function[{y}, f

[x, y]]][y]

Function
[
{y$} , f

[
y, y$

]]
>> Function[{y}, f[x, y]] /. x->

y

Function
[
{y} , f

[
y, y
]]

88

>> Function[y, Function[x, y^x
]][x][y]

xy

>> Function[x, Function[y, x^y
]][x][y]

xy

Slots in inner functions are not affected by
outer function application:
>> g[#] & [h[#]] & [5]

g [h [5]]

Identity

>> Identity[x]
x

>> Identity[x, y]

Identity
[
x, y
]

Slot

#n
represents the nth argument to a pure
function.

#
is short-hand for #1

#0
represents the pure function itself.

>> #
#1

Unused arguments are simply ignored:
>> {#1, #2, #3}&[1, 2, 3, 4, 5]

{1, 2, 3}

Recursive pure functions can be written us-
ing #0:
>> If[#1<=1, 1, #1 #0[#1-1]]&

[10]

3 628 800

SlotSequence

##
is the sequence of arguments sup-
plied to a pure function.

##n
starts with the nth argument.

>> Plus[##]& [1, 2, 3]
6

>> Plus[##2]& [1, 2, 3]
5

>> FullForm[##]
SlotSequence [1]

89

XIV. Graphics

Contents

AbsoluteThickness . 90
Black 90
Blend 91
Blue 91
CMYKColor 91
Circle 91
CircleBox 91
Cyan 91
Darker 91
Directive 92
Disk 92
DiskBox 92
EdgeForm 92
FaceForm 92
Graphics 93

GraphicsBox 93
Gray 93
GrayLevel 93
Green 93
Hue 94
Inset 94
InsetBox 94
LightRed 94
Lighter 94
Line 95
LineBox 95
Magenta 95
Offset 95
Orange 95
Point 96

PointBox 96
Polygon 96
PolygonBox 96
Purple 97
RGBColor 97
Rectangle 97
RectangleBox 97
Red 97
Text 98
Thick 98
Thickness 98
Thin 98
White 98
Yellow 98

AbsoluteThickness

Black

Black
represents the color black in graphics.

>> Graphics[{Black, Disk[]},
ImageSize->Small]

>> Black
GrayLevel [0]

Blend

>> Blend[{Red, Blue}]
RGBColor [0.5, 0., 0.5, 1.]

>> Blend[{Red, Blue}, 0.3]
RGBColor [0.7, 0., 0.3, 1.]

>> Blend[{Red, Blue, Green},
0.75]

RGBColor [0., 0.5, 0.5, 1.]

>> Graphics[Table[{Blend[{Red,
Green, Blue}, x], Rectangle
[{10 x, 0}]}, {x, 0, 1,
1/10}]]

90

>> Graphics[Table[{Blend[{
RGBColor[1, 0.5, 0, 0.5],
RGBColor[0, 0, 1, 0.5]}, x],
Disk[{5x, 0}]}, {x, 0, 1,
1/10}]]

Blue

Blue
represents the color blue in graphics.

>> Graphics[{Blue, Disk[]},
ImageSize->Small]

>> Blue
RGBColor [0, 0, 1]

CMYKColor

Circle

Circle[{cx, cy}, r]
draws a circle with center (cx, cy)
and radius r.

Circle[{cx, cy}, {rx, ry}]
draws an ellipse.

Circle[{cx, cy}]
chooses radius 1.

Circle[]
chooses center (0, 0) and radius 1.

>> Graphics[{Red, Circle[{0, 0},
{2, 1}]}]

CircleBox

Cyan

Cyan
represents the color cyan in graphics.

>> Graphics[{Cyan, Disk[]},
ImageSize->Small]

>> Cyan

RGBColor [0, 1, 1]

Darker

Darker[c, f]
is equivalent to Blend[{c, Black},
f].

Darker[c]
is equivalent to Darker[c, 1/3].

>> Graphics[Table[{Darker[Yellow
, x], Disk[{12x, 0}]}, {x, 0,
1, 1/6}]]

91

Directive

Disk

Disk[{cx, cy}, r]
fills a circle with center (cx, cy) and
radius r.

Disk[{cx, cy}, {rx, ry}]
fills an ellipse.

Disk[{cx, cy}]
chooses radius 1.

Disk[]
chooses center (0, 0) and radius 1.

>> Graphics[{Blue, Disk[{0, 0},
{2, 1}]}]

The outer border can be drawn using
EdgeForm:
>> Graphics[{EdgeForm[Black],

Red, Disk[]}]

DiskBox

EdgeForm

FaceForm

Graphics

Graphics[primitives, options]
represents a graphic.

>> Graphics[{Blue, Line[{{0,0},
{1,1}}]}]

Graphics supports PlotRange:
>> Graphics[{Rectangle[{1, 1}]},

Axes -> True, PlotRange ->
{{-2, 1.5}, {-1, 1.5}}]

−2.−1.5−1.−0.5 0.5 1. 1.5

−1.

−0.5

0.5

1.

1.5

Graphics produces GraphicsBox boxes:
>> Graphics[Rectangle[]] //

ToBoxes // Head

GraphicsBox

In TeXForm, Graphics produces Asymptote
figures:

92

>> Graphics[Circle[]] // TeXForm

\begin{asy}
size(5.85559796438cm, 5cm);
draw(ellipse((175.0,175.0),175.0,175.0),
rgb(0, 0,
0)+linewidth(0.666666666667));
clip(box((-0.333333333333,0.333333333333),
(350.333333333,349.666666667)));
\end{asy}

Invalid graphics directives yield invalid box
structures:
>> Graphics[Circle[{a, b}]]

GraphicsBox[CircleBox[List[a,
b]], Rule[AspectRatio,
Automatic], Rule[Axes,
False], Rule[AxesStyle, List[]],
Rule[ImageSize, Automatic],
Rule[LabelStyle, List[]],
Rule[PlotRange, Automatic],
Rule[PlotRangePadding,
Automatic], Rule[TicksStyle,
List[]]] is not a
valid box structure.

GraphicsBox

Gray

Gray
represents the color gray in graphics.

>> Graphics[{Gray, Disk[]},
ImageSize->Small]

>> Gray

GrayLevel [0.5]

GrayLevel

Green

Green
represents the color green in graph-
ics.

>> Graphics[{Green, Disk[]},
ImageSize->Small]

>> Green
RGBColor [0, 1, 0]

Hue

>> Graphics[Table[{EdgeForm[Gray
], Hue[h, s], Disk[{12h, 8s
}]}, {h, 0, 1, 1/6}, {s, 0,
1, 1/4}]]

93

>> Graphics[Table[{EdgeForm[{
GrayLevel[0, 0.5]}], Hue
[(-11+q+10r)/72, 1, 1, 0.6],
Disk[(8-r){Cos[2Pi q/12], Sin
[2Pi q/12]}, (8-r)/3]}, {r,
6}, {q, 12}]]

Inset

InsetBox

LightRed

LightRed
represents the color light red in
graphics.

>> Graphics[{LightRed, Disk[]},
ImageSize->Small]

Lighter

Lighter[c, f]
is equivalent to Blend[{c, White},
f].

Lighter[c]
is equivalent to Lighter[c, 1/3].

>> Lighter[Orange, 1/4]

RGBColor [1., 0.625, 0.25, 1.]

>> Graphics[{Lighter[Orange,
1/4], Disk[]}]

>> Graphics[Table[{Lighter[
Orange, x], Disk[{12x, 0}]},
{x, 0, 1, 1/6}]]

Line

Line[{point_1, point_2 ...}]
represents the line primitive.

Line[{{p_11, p_12, ...}, {p_21,
p_22, ...}, ...}]

represents a number of line primi-
tives.

94

>> Graphics[Line
[{{0,1},{0,0},{1,0},{1,1}}]]

>> Graphics3D[Line
[{{0,0,0},{0,1,1},{1,0,0}}]]

LineBox

Magenta

Magenta
represents the color magenta in
graphics.

>> Graphics[{Magenta, Disk[]},
ImageSize->Small]

>> Magenta

RGBColor [1, 0, 1]

Offset

Orange

Orange
represents the color orange in graph-
ics.

>> Graphics[{Orange, Disk[]},
ImageSize->Small]

Point

Line[{point_1, point_2 ...}]
represents the point primitive.

Line[{{p_11, p_12, ...}, {p_21,
p_22, ...}, ...}]

represents a number of point primi-
tives.

>> Graphics[Point[{0,0}]]

95

>> Graphics[Point[Table[{Sin[t],
Cos[t]}, {t, 0, 2. Pi, Pi /

15.}]]]

>> Graphics3D[Point[Table[{Sin[t
], Cos[t], 0}, {t, 0, 2. Pi,
Pi / 15.}]]]

PointBox

Polygon

Polygon[{point_1, point_2 ...}]
represents the filled polygon primi-
tive.

Polygon[{{p_11, p_12, ...}, {p_21,
p_22, ...}, ...}]

represents a number of filled polygon
primitives.

>> Graphics[Polygon
[{{1,0},{0,0},{0,1}}]]

>> Graphics3D[Polygon
[{{0,0,0},{0,1,1},{1,0,0}}]]

PolygonBox

Purple

Purple
represents the color purple in graph-
ics.

96

>> Graphics[{Purple, Disk[]},
ImageSize->Small]

RGBColor

Rectangle

Rectangle[{xmin, ymin}]
represents a unit square with bottom-
left corner at {xmin, ymin}.

’Rectangle[{xmin, ymin}, {xmax, ymax}]
is a rectange extending from {xmin,
ymin} to {xmax, ymax}.

>> Graphics[Rectangle[]]

>> Graphics[{Blue, Rectangle
[{0.5, 0}], Orange, Rectangle
[{0, 0.5}]}]

RectangleBox

Red

Red
represents the color red in graphics.

>> Graphics[{Red, Disk[]},
ImageSize->Small]

>> Red
RGBColor [1, 0, 0]

97

Text

Thick

Thickness

Thin

White

White
represents the color white in graph-
ics.

>> Graphics[{White, Disk[]},
ImageSize->Small]

>> White
GrayLevel [1]

Yellow

Yellow
represents the color yellow in graph-
ics.

>> Graphics[{Yellow, Disk[]},
ImageSize->Small]

>> Yellow
RGBColor [1, 1, 0]

98

XV. Graphics (3D)

Contents

Cuboid 99
Graphics3D 100
Graphics3DBox . . . 101

Line3DBox 101
Point3DBox 101
Polygon3DBox . . . 101

Sphere 101
Sphere3DBox 101

Cuboid

Cuboid[{xmin, ymin, zmin}]
is a unit cube.

Cuboid[{xmin, ymin, zmin}, {xmax,
ymax, zmax}]

represents a cuboid extending from
{xmin, ymin, zmin} to {xmax, ymax,
zmax}.

>> Graphics3D[Cuboid[{0, 0, 1}]]

>> Graphics3D[{Red, Cuboid[{0,
0, 0}, {1, 1, 0.5}], Blue,
Cuboid[{0.25, 0.25, 0.5},
{0.75, 0.75, 1}]}]

Graphics3D

Graphics3D[primitives, options]
represents a three-dimensional
graphic.

99

>> Graphics3D[Polygon[{{0,0,0},
{0,1,1}, {1,0,0}}]]

In TeXForm, Graphics3D creates Asymptote
figures:

>> Graphics3D[Sphere[]] //
TeXForm

\begin{asy}
import three;
import solids;
size(6cm, 6cm);
currentprojection=perspective(2.6,-4.8,4.0);
currentlight=light(rgb(0.5,0.5,1),
specular=red, (2,0,2), (2,2,2),
(0,2,2));
draw(surface(sphere((0, 0, 0), 1)),
rgb(1,1,1));
draw(((-1.0,-1.0,-1.0)–(1.0,-1.0,-1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1.0,1.0,-1.0)–(1.0,1.0,-1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1.0,-1.0,1.0)–(1.0,-1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1.0,1.0,1.0)–(1.0,1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1.0,-1.0,-1.0)–(-1.0,1.0,-1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1.0,-1.0,-1.0)–(1.0,1.0,-1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1.0,-1.0,1.0)–(-1.0,1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1.0,-1.0,1.0)–(1.0,1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1.0,-1.0,-1.0)–(-1.0,-1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1.0,-1.0,-1.0)–(1.0,-1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1.0,1.0,-1.0)–(-1.0,1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1.0,1.0,-1.0)–(1.0,1.0,1.0)),
rgb(0.4, 0.4, 0.4)+linewidth(1));
\end{asy}

100

Graphics3DBox

Line3DBox

Point3DBox

Polygon3DBox

Sphere

Sphere[{x, y, z}]
is a sphere of radius 1 centerd at the
point {x, y, z}.

Sphere[{x, y, z}, r]
is a sphere of radius r centered at the
point x, y, z.

Sphere[{{x1, y1, z1}, {x2, y2, z2},
... }, r]

is a collection spheres of radius r cen-
tered at the points {x1, y2, z2}, {x2, y2,
z2}, ...

>> Graphics3D[Sphere[{0, 0, 0},
1]]

>> Graphics3D[{Yellow, Sphere
[{{-1, 0, 0}, {1, 0, 0}, {0,
0, Sqrt[3.]}}, 1]}]

Sphere3DBox

101

XVI. Input and Output

Contents

Format 102
FullForm 102
General 103
Grid 103
GridBox 103
Infix 103
InputForm 103
MakeBoxes 103
MathMLForm 103
MatrixForm 104

Message 104
MessageName (::) . 104
OutputForm 104
Postfix (//) 104
Precedence 105
Prefix (@) 105
Print 105
Quiet 105
Row 106
RowBox 106

StandardForm 106
StringForm 106
Style 106
Subscript 106
Subsuperscript . . . 106
Superscript 106
TableForm 106
TeXForm 107
ToBoxes 107

Format

Assign values to Format to control how
particular expressions should be formatted
when printed to the user.
>> Format[f[x___]] := Infix[{x},

"~"]

>> f[1, 2, 3]
1 ∼ 2 ∼ 3

>> f[1]
1

Raw objects cannot be formatted:
>> Format[3] = "three";

Cannot assign to raw object 3.

Format types must be symbols:
>> Format[r, a + b] = "r";

Format type a + b is not a symbol.

Formats must be attached to the head of an
expression:

>> f /: Format[g[f]] = "my f";

Tag f not found or too
deep for an assigned rule.

FullForm

>> FullForm[a + b * c]
Plus [a, Times [b, c]]

>> FullForm[2/3]
Rational [2, 3]

>> FullForm["A string"]

"A string"

General

General is a symbol to which all general-
purpose messages are assigned.
>> General::argr

‘1‘ called with 1 argument;
‘2‘ arguments are expected.

102

>> Message[Rule::argr, Rule, 2]

Rule called with 1 argument;
2 arguments are expected.

Grid

>> Grid[{{a, b}, {c, d}}]

a b
c d

GridBox

Infix

>> Format[g[x_, y_]] := Infix[{x
, y}, "#", 350, Left]

>> g[a, g[b, c]]

a# (b#c)

>> g[g[a, b], c]

a#b#c

>> g[a + b, c]

(a + b) #c

>> g[a * b, c]

ab#c

>> g[a, b] + c

c + a#b

>> g[a, b] * c

c (a#b)

>> Infix[{a, b, c}, {"+", "-"}]
a + b − c

InputForm

>> InputForm[a + b * c]

a + b ∗ c

>> InputForm["A string"]

"A string"

>> InputForm[f’[x]]

Derivative [1]
[

f
]

[x]

>> InputForm[Derivative[1, 0][f
][x]]

Derivative [1, 0]
[

f
]

[x]

MakeBoxes

String representation of boxes
>> \(x \^ 2\)

SuperscriptBox [x, 2]

>> \(x _ 2\)
SubscriptBox [x, 2]

>> \(a \+ b \% c\)
UnderoverscriptBox [a, b, c]

>> \(a \& b \% c\)
UnderoverscriptBox [a, c, b]

>> \(x \& y \)

OverscriptBox
[
x, y
]

>> \(x \+ y \)

UnderscriptBox
[
x, y
]

MathMLForm

>> MathMLForm[HoldForm[Sqrt[a
^3]]]

<math><msqrt><msup>
<mi>a</mi> <mn>3</mn>
</msup></msqrt></math>

MatrixForm

>> Array[a,{4,3}]//MatrixForm
a [1, 1] a [1, 2] a [1, 3]
a [2, 1] a [2, 2] a [2, 3]
a [3, 1] a [3, 2] a [3, 3]
a [4, 1] a [4, 2] a [4, 3]



103

Message

>> a::b = "Hello world!"
Hello world!

>> Message[a::b]

Hello world!

>> a::c := "Hello ‘1‘, Mr
00‘2‘!"

>> Message[a::c, "you", 3 + 4]

Hello you, Mr 007!

MessageName (::)

MessageName is the head of message IDs of
the form symbol::tag.
>> FullForm[a::b]

MessageName [a, "b"]

The second parameter tag is interpreted as
a string.
>> FullForm[a::"b"]

MessageName [a, "b"]

OutputForm

>> OutputForm[f’[x]]

f ′ [x]

>> OutputForm[Derivative[1, 0][f
][x]]

Derivative [1, 0]
[

f
]

[x]

>> OutputForm["A string"]

A string

>> OutputForm[Graphics[Rectangle
[]]]

Postfix (//)

>> b // a
a [b]

>> c // b // a
a [b [c]]

The postfix operator // is parsed to an ex-
pression before evaluation:
>> Hold[x // a // b // c // d //

e // f]

Hold
[

f [e [d [c [b [a [x]]]]]]
]

Precedence

Precedence[op]
returns the precedence of the built-in
operator op.

>> Precedence[Plus]
310.

>> Precedence[Plus] < Precedence
[Times]

True

Unknown symbols have precedence 670:
>> Precedence[f]

670.

104

Other expressions have precedence 1000:
>> Precedence[a + b]

1 000.

Prefix (@)

>> a @ b
a [b]

>> a @ b @ c
a [b [c]]

>> Format[p[x_]] := Prefix[{x},
"*"]

>> p[3]
∗3

>> Format[q[x_]] := Prefix[{x},
"~", 350]

>> q[a+b]

∼ (a + b)

>> q[a*b]

∼ ab

>> q[a]+b

b+ ∼ a

The prefix operator @ is parsed to an expres-
sion before evaluation:
>> Hold[a @ b @ c @ d @ e @ f @

x]

Hold
[
a
[
b
[
c
[
d
[
e
[

f [x]
]]]]]]

Print

>> Print["Hello world!"]
Hello world!

>> Print["The answer is ", 7 *
6, "."]

The answer is 42.

Quiet

Quiet[expr, {$s1::t1$, ...}]
evaluates expr, without messages {
$s1::t1$, ...} being displayed.

Quiet[expr, All]
evaluates expr, without any messages
being displayed.

Quiet[expr, None]
evaluates expr, without all messages
being displayed.

Quiet[expr, off, on]
evaluates expr, with messages off be-
ing suppressed, but messages on be-
ing displayed.

>> a::b = "Hello";

>> Quiet[x+x, {a::b}]
2x

>> Quiet[Message[a::b]; x+x, {a
::b}]

2x

>> Message[a::b]; y=Quiet[
Message[a::b]; x+x, {a::b}];
Message[a::b]; y

Hello
Hello
2x

>> Quiet[expr, All, All]

Arguments 2 and 3 of
Quiet

[
expr, All, All

]
should not both be All.

Quiet
[
expr, All, All

]
>> Quiet[x + x, {a::b}, {a::b}]

In Quiet
[
x + x, {a::b} , {a::b}

]
the message name(s) {a::b}
appear in both the list of
messages to switch off and the
list of messages to switch on.

Quiet
[
x + x, {a::b} , {a::b}

]

105

Row

RowBox

StandardForm

>> StandardForm[a + b * c]
a + bc

>> StandardForm["A string"]

A string

StandardForm is used by default:
>> "A string"

A string

>> f’[x]

f ′ [x]

StringForm

>> StringForm["‘1‘ bla ‘2‘ blub
‘‘ bla ‘2‘", a, b, c]

a bla b blub c bla b

Style

Subscript

>> Subscript[x,1,2,3] // TeXForm

x_{1,2,3}

Subsuperscript

>> Subsuperscript[a, b, c] //
TeXForm

a_b∧c

Superscript

>> Superscript[x,3] // TeXForm

x∧3

TableForm

>> TableForm[Array[a, {3,2}],
TableDepth->1]

{a [1, 1] , a [1, 2]}
{a [2, 1] , a [2, 2]}
{a [3, 1] , a [3, 2]}

A table of Graphics:
>> Table[Style[Graphics[{

EdgeForm[{Black}], RGBColor[r
,g,b], Rectangle[]}],
ImageSizeMultipliers->{0.2,
1}], {r,0,1,1/2}, {g
,0,1,1/2}, {b,0,1,1/2}] //
TableForm

TeXForm

>> TeXForm[HoldForm[Sqrt[a^3]]]

\sqrt{a∧3}

106

ToBoxes

>> ToBoxes[a + b]

RowBox
[
{a, +, b}

]
>> ToBoxes[a ^ b] // FullForm

SuperscriptBox ["a", "b"]

107

XVII. Integer functions

Contents

Floor 108 IntegerLength 108

Floor

Floor[x]
gives the smallest integer less than or
equal to x.

Floor[x, a]
gives the smallest multiple of a less
than or equal to x.

>> Floor[10.4]
10

>> Floor[10/3]
3

>> Floor[10]
10

>> Floor[21, 2]
20

>> Floor[2.6, 0.5]
2.5

>> Floor[-10.4]
−11

For negative a, the smallest multiple of a
greater than or equal to x is returned.
>> Floor[10.4, -1]

11

>> Floor[-10.4, -1]
−10

IntegerLength

>> IntegerLength[123456]
6

>> IntegerLength[10^10000]

10 001

>> IntegerLength[-10^1000]

1 001

IntegerLength with base 2:
>> IntegerLength[8, 2]

4

Check that IntegerLength is correct for the
first 100 powers of 10:
>> IntegerLength /@ (10 ^ Range

[100])== Range[2, 101]

True

The base must be greater than 1:
>> IntegerLength[3, -2]

Base − 2 is not an
integer greater than 1.

IntegerLength [3, − 2]

108

XVIII. Linear algebra

Contents

Det 109
Eigenvalues 109
Eigenvectors 109

Inverse 110
LinearSolve 110
MatrixRank 110

NullSpace 110
RowReduce 111

Det

Det[m]
computes the determinant of the ma-
trix m.

>> Det[{{1, 1, 0}, {1, 0, 1},
{0, 1, 1}}]

−2

Symbolic determinant:
>> Det[{{a, b, c}, {d, e, f}, {g

, h, i}}]

aei − a f h − bdi + b f g + cdh − ceg

Eigenvalues

Eigenvalues[m]
computes the eigenvalues of the ma-
trix m.

>> Eigenvalues[{{1, 1, 0}, {1,
0, 1}, {0, 1, 1}}]

{2, − 1, 1}

Eigenvectors

Eigenvectors[m]
computes the eigenvectors of the ma-
trix m.

>> Eigenvectors[{{1, 1, 0}, {1,
0, 1}, {0, 1, 1}}]

{{1, 1, 1} , {1, − 2, 1} , {−1, 0, 1}}

>> Eigenvectors[{{1, 0, 0}, {0,
1, 0}, {0, 0, 0}}]

{{0, 1, 0} , {1, 0, 0} , {0, 0, 1}}

>> Eigenvectors[{{2, 0, 0}, {0,
-1, 0}, {0, 0, 0}}]

{{1, 0, 0} , {0, 1, 0} , {0, 0, 1}}

>> Eigenvectors[{{0.1, 0.2},
{0.8, 0.5}}]

{{0.309016994374947, 1.} ,
{−0.809016994374947, 1.}}

Inverse

Inverse[m]
computes the inverse of the matrix m.

109

>> Inverse[{{1, 2, 0}, {2, 3,
0}, {3, 4, 1}}]

{{−3, 2, 0} , {2, − 1,
0} , {1, − 2, 1}}

>> Inverse[{{1, 0}, {0, 0}}]
The matrix {{1, 0} ,
{0, 0}} is singular.

Inverse
[
{{1, 0} , {0, 0}}

]

LinearSolve

LinearSolve[matrix, right]
solves the linear equation system ma-
trix . x = right and returns one cor-
responding solution x.

>> LinearSolve[{{1, 1, 0}, {1,
0, 1}, {0, 1, 1}}, {1, 2, 3}]

{0, 1, 2}

Test the solution:
>> {{1, 1, 0}, {1, 0, 1}, {0, 1,

1}} . {0, 1, 2}

{1, 2, 3}

If there are several solutions, one arbitrary
solution is returned:
>> LinearSolve[{{1, 2, 3}, {4,

5, 6}, {7, 8, 9}}, {1, 1, 1}]

{−1, 1, 0}

Infeasible systems are reported:
>> LinearSolve[{{1, 2, 3}, {4,

5, 6}, {7, 8, 9}}, {1, -2,
3}]

Linear equation encountered
that has no solution.

LinearSolve
[
{{1, 2, 3} , {4,

5, 6} , {7, 8, 9}} , {1, − 2, 3}
]

MatrixRank

MatrixRank[matrix]
returns the rank of matrix.

>> MatrixRank[{{1, 2, 3}, {4, 5,
6}, {7, 8, 9}}]

2

>> MatrixRank[{{1, 1, 0}, {1, 0,
1}, {0, 1, 1}}]

3

>> MatrixRank[{{a, b}, {3 a, 3 b
}}]

1

NullSpace

NullSpace[matrix]
returns a list of vectors that span the
nullspace of matrix.

>> NullSpace[{{1, 2, 3}, {4, 5,
6}, {7, 8, 9}}]

{{1, − 2, 1}}

>> A = {{1, 1, 0}, {1, 0, 1},
{0, 1, 1}};

>> NullSpace[A]

{}

>> MatrixRank[A]
3

RowReduce

RowReduce[matrix]
returns the reduced row-echelon
form of matrix.

110

>> RowReduce[{{1, 0, a}, {1, 1,
b}}]

{{1, 0, a} , {0, 1, − a + b}}

>> RowReduce[{{1, 2, 3}, {4, 5,
6}, {7, 8, 9}}] // MatrixForm 1 0 −1

0 1 2
0 0 0



111

XIX. List functions

Contents

Array 112
Cases 112
Complement 113
ConstantArray 113
DeleteDuplicates . . 113
Drop 113
Extract 113
First 113
Join 114
Last 114
Length 114

Level 115
LevelQ 115
List 115
ListQ 115
MemberQ 115
Most 116
NotListQ 116
Part 117
Partition 117
Range 117
Reap 118
ReplacePart 118

Rest 118
Riffle 118
Select 119
Sow 119
Span 119
Split 119
SplitBy 120
Table 120
Take 120
Tuples 121
UnitVector 121

Array

>> Array[f, 4]

{ f [1] , f [2] , f [3] , f [4]}

>> Array[f, {2, 3}]

{{ f [1, 1] , f [1, 2] , f [1, 3]} ,
{ f [2, 1] , f [2, 2] , f [2, 3]}}

>> Array[f, {2, 3}, 3]

{{ f [3, 3] , f [3, 4] , f [3, 5]} ,
{ f [4, 3] , f [4, 4] , f [4, 5]}}

>> Array[f, {2, 3}, {4, 6}]

{{ f [4, 6] , f [4, 7] , f [4, 8]} ,
{ f [5, 6] , f [5, 7] , f [5, 8]}}

>> Array[f, {2, 3}, 1, Plus]

f [1, 1] + f [1, 2] + f [1,
3] + f [2, 1] + f [2, 2] + f [2, 3]

Cases

Complement

Complement[all, e1, e2, ...]
returns an expression containing the
elements in the set all that are not in
any of e1, e2, etc.

Complement[all, e1, e2, ...,
SameTest->test]

applies test to the elements in all and
each of the ei to determine equality.

The sets all, e1, etc can have any head, which
must all match. The returned expression has
the same head as the input expressions.
>> Complement[{a, b, c}, {a, c}]

{b}

>> Complement[{a, b, c}, {a, c},
{b}]

{}

112

>> Complement[f[z, y, x, w], f[x
], f[x, z]]

f
[
w, y

]

ConstantArray

>> ConstantArray[a, 3]

{a, a, a}

>> ConstantArray[a, {2, 3}]

{{a, a, a} , {a, a, a}}

DeleteDuplicates

DeleteDuplicates[list]
deletes duplicates from list.

DeleteDuplicates[list, test]
deletes elements from list based on
whether the function test yields True
on pairs of elements.

>> DeleteDuplicates[{1, 7, 8, 4,
3, 4, 1, 9, 9, 2, 1}]

{1, 7, 8, 4, 3, 9, 2}

>> DeleteDuplicates
[{3,2,1,2,3,4}, Less]

{3, 2, 1}

Drop

>> Drop[{a, b, c, d}, 3]

{d}

>> Drop[{a, b, c, d}, -2]

{a, b}

>> Drop[{a, b, c, d, e}, {2,
-2}]

{a, e}

Drop a submatrix:

>> A = Table[i*10 + j, {i, 4}, {
j, 4}]

{{11, 12, 13, 14} , {21,
22, 23, 24} , {31, 32, 33,
34} , {41, 42, 43, 44}}

>> Drop[A, {2, 3}, {2, 3}]

{{11, 14} , {41, 44}}

Extract

Extract[expr, list]
extracts parts of expr specified by list.

Extract[expr, {list1, list2, ...}]
extracts a list of parts.

Extract[expr, i, j, ...] is equivalent to
Part[expr, {i, j, ...}].
>> Extract[a + b + c, {2}]

b

>> Extract[{{a, b}, {c, d}},
{{1}, {2, 2}}]

{{a, b} , d}

First

First[expr]
returns the first elment in expr.

First[expr] is equivalent to expr[[1]].
>> First[{a, b, c}]

a

>> First[a + b + c]
a

>> First[x]
Nonatomic expression expected.

First [x]

113

Join

Join concatenates lists.
>> Join[{a, b}, {c, d, e}]

{a, b, c, d, e}

>> Join[{{a, b}, {c, d}}, {{1,
2}, {3, 4}}]

{{a, b} , {c, d} , {1, 2} , {3, 4}}

The concatenated expressions may have any
head.
>> Join[a + b, c + d, e + f]

a + b + c + d + e + f

However, it must be the same for all expres-
sions.
>> Join[a + b, c * d]

Heads Plus and Times are
expected to be the same.

Join [a + b, cd]

Last

Last[expr]
returns the last elment in expr.

Last[expr] is equivalent to expr[[-1]].
>> Last[{a, b, c}]

c

>> Last[x]
Nonatomic expression expected.

Last [x]

Length

>> Length[{1, 2, 3}]
3

Length operates on the FullForm of expres-
sions:
>> Length[Exp[x]]

2

>> FullForm[Exp[x]]

Power [E, x]

The length of atoms is 0:
>> Length[a]

0

Note that rational and complex numbers are
atoms, although their FullForm might sug-
gest the opposite:
>> Length[1/3]

0

>> FullForm[1/3]
Rational [1, 3]

Level

Level[expr, levelspec]
gives a list of all subexpressions of
expr at the level(s) specified by level-
spec.

Level uses standard level specifications:

n
levels 1 through n

Infinity
all levels from level 1

{n}
level n only

{m, n}
levels m through n

Level 0 corresponds to the whole expres-
sion.
A negative level -n consists of parts with
depth n.
Level -1 is the set of atoms in an expression:
>> Level[a + b ^ 3 * f[2 x ^ 2],

{-1}]

{a, b, 3, 2, x, 2}

>> Level[{{{{a}}}}, 3]

{{a} , {{a}} , {{{a}}}}

114

>> Level[{{{{a}}}}, -4]

{{{{a}}}}

>> Level[{{{{a}}}}, -5]

{}

>> Level[h0[h1[h2[h3[a]]]], {0,
-1}]

{a, h3 [a] , h2 [h3 [a]] , h1 [h2 [
h3 [a]]] , h0 [h1 [h2 [h3 [a]]]]}

Use the option Heads -> True to include
heads:
>> Level[{{{{a}}}}, 3, Heads ->

True]

{List, List, List, {a} ,
{{a}} , {{{a}}}}

>> Level[x^2 + y^3, 3, Heads ->
True]{

Plus, Power, x, 2,

x2, Power, y, 3, y3}
>> Level[a ^ 2 + 2 * b, {-1},

Heads -> True]

{Plus, Power, a, 2, Times, 2, b}

>> Level[f[g[h]][x], {-1}, Heads
-> True]

{ f , g, h, x}

>> Level[f[g[h]][x], {-2, -1},
Heads -> True]{

f , g, h, g [h] , x, f
[
g [h]

]
[x]
}

LevelQ

LevelQ[expr]
tests whether expr is a valid level
specification.

>> LevelQ[2]
True

>> LevelQ[{2, 4}]
True

>> LevelQ[Infinity]

True

>> LevelQ[a + b]
False

List

List is the head of lists.
>> Head[{1, 2, 3}]

List

Lists can be nested:
>> {{a, b, {c, d}}}

{{a, b, {c, d}}}

ListQ

ListQ[expr]
tests whether expr is a List.

>> ListQ[{1, 2, 3}]
True

>> ListQ[{{1, 2}, {3, 4}}]
True

>> ListQ[x]
False

MemberQ

Most

Most[expr]
returns expr with the last element re-
moved.

Most[expr] is equivalent to expr[[;;-2]].
>> Most[{a, b, c}]

{a, b}

115

>> Most[a + b + c]
a + b

>> Most[x]
Nonatomic expression expected.

Most [x]

NotListQ

Part

>> A = {a, b, c, d};

>> A[[3]]
c

Negative indizes count from the end:
>> {a, b, c}[[-2]]

b

Part can be applied on any expression, not
necessarily lists.
>> (a + b + c)[[2]]

b

expr[[0]] gives the head of expr:
>> (a + b + c)[[0]]

Plus

Parts of nested lists:
>> M = {{a, b}, {c, d}};

>> M[[1, 2]]
b

You can use Span to specify a range of parts:
>> {1, 2, 3, 4}[[2;;4]]

{2, 3, 4}

>> {1, 2, 3, 4}[[2;;-1]]

{2, 3, 4}

A list of parts extracts elements at certain in-
dices:
>> {a, b, c, d}[[{1, 3, 3}]]

{a, c, c}

Get a certain column of a matrix:

>> B = {{a, b, c}, {d, e, f}, {g
, h, i}};

>> B[[;;, 2]]

{b, e, h}

Extract a submatrix of 1st and 3rd row and
the two last columns:
>> B = {{1, 2, 3}, {4, 5, 6},

{7, 8, 9}};

>> B[[{1, 3}, -2;;-1]]

{{2, 3} , {8, 9}}

Further examples:
>> (a+b+c+d)[[-1;;-2]]

0

>> x[[2]]
Part specification is longer

than depth of object.

x [[2]]

Assignments to parts are possible:
>> B[[;;, 2]] = {10, 11, 12}

{10, 11, 12}

>> B
{{1, 10, 3} , {4, 11, 6} , {7, 12, 9}}

>> B[[;;, 3]] = 13
13

>> B
{{1, 10, 13} , {4, 11,

13} , {7, 12, 13}}

>> B[[1;;-2]] = t;

>> B
{t, t, {7, 12, 13}}

>> F = Table[i*j*k, {i, 1, 3}, {
j, 1, 3}, {k, 1, 3}];

>> F[[;; All, 2 ;; 3, 2]] = t;

116

>> F
{{{1, 2, 3} , {2, t, 6} , {3,

t, 9}} , {{2, 4, 6} , {4, t,
12} , {6, t, 18}} , {{3, 6,
9} , {6, t, 18} , {9, t, 27}}}

>> F[[;; All, 1 ;; 2, 3 ;; 3]] =
k;

>> F
{{{1, 2, k} , {2, t, k} , {3, t, 9}} ,
{{2, 4, k} , {4, t, k} , {6, t, 18}} ,
{{3, 6, k} , {6, t, k} , {9, t, 27}}}

Of course, part specifications have prece-
dence over most arithmetic operations:
>> A[[1]] + B[[2]] + C[[3]] //

Hold // FullForm

Hold [Plus [Part [A, 1] ,
Part [B, 2] , Part [C, 3]]]

Partition

Partition[list, n]
partitions list into sublists of length n.

Parition[list, n, d]
partitions list into sublists of length n
which overlap d indicies.

>> Partition[{a, b, c, d, e, f},
2]

{{a, b} , {c, d} , {e, f }}

>> Partition[{a, b, c, d, e, f},
3, 1]

{{a, b, c} , {b, c, d} ,
{c, d, e} , {d, e, f }}

Range

>> Range[5]

{1, 2, 3, 4, 5}

>> Range[-3, 2]

{−3, − 2, − 1, 0, 1, 2}

>> Range[0, 2, 1/3]{
0,

1
3

,
2
3

, 1,
4
3

,
5
3

, 2
}

Reap

Reap[expr]
gives the result of evaluating expr, to-
gether with all values sown during
this evaluation. Values sown with
different tags are given in different
lists.

Reap[expr, pattern]
only yields values sown with a tag
matching pattern. Reap[expr] is
equivalent to Reap[expr, _].

Reap[expr, {pattern1, pattern2, ...}]
uses multiple patterns.

Reap[expr, pattern, f]
applies f on each tag and the cor-
responding values sown in the form
f[tag, {e1, e2, ...}].

>> Reap[Sow[3]; Sow[1]]

{1, {{3, 1}}}

>> Reap[Sow[2, {x, x, x}]; Sow
[3, x]; Sow[4, y]; Sow[4, 1],
{_Symbol, _Integer, x}, f]{
4,
{{

f
[
x, {2, 2, 2, 3}

]
,

f
[
y, {4}

]}
,
{

f
[
1, {4}

]}
,{

f
[
x, {2, 2, 2, 3}

]}}}
Find the unique elements of a list, keeping
their order:
>> Reap[Sow[Null, {a, a, b, d, c

, a}], _, # &][[2]]

{a, b, d, c}

Sown values are reaped by the innermost
matching Reap:

117

>> Reap[Reap[Sow[a, x]; Sow[b,
1], _Symbol, Print["Inner: ",
#1]&];, _, f]

Inner: x{
Null,

{
f
[
1, {b}

]}}
When no value is sown, an empty list is re-
turned:
>> Reap[x]

{x, {}}

ReplacePart

>> ReplacePart[{a, b, c}, 1 -> t
]

{t, b, c}

>> ReplacePart[{{a, b}, {c, d}},
{2, 1} -> t]

{{a, b} , {t, d}}

>> ReplacePart[{{a, b}, {c, d}},
{{2, 1} -> t, {1, 1} -> t}]

{{t, b} , {t, d}}

>> ReplacePart[{a, b, c}, {{1},
{2}} -> t]

{t, t, c}

Delayed rules are evaluated once for each
replacement:
>> n = 1;

>> ReplacePart[{a, b, c, d},
{{1}, {3}} :> n++]

{1, b, 2, d}

Non-existing parts are simply ignored:
>> ReplacePart[{a, b, c}, 4 -> t

]

{a, b, c}

You can replace heads by replacing part 0:

>> ReplacePart[{a, b, c}, 0 ->
Times]

abc

(This is equivalent to Apply.)
Negative part numbers count from the end:
>> ReplacePart[{a, b, c}, -1 ->

t]

{a, b, t}

Rest

Rest[expr]
returns expr with the first element re-
moved.

Rest[expr] is equivalent to expr[[2;;]].
>> Rest[{a, b, c}]

{b, c}

>> Rest[a + b + c]
b + c

>> Rest[x]
Nonatomic expression expected.

Rest [x]

Riffle

>> Riffle[{a, b, c}, x]

{a, x, b, x, c}

>> Riffle[{a, b, c}, {x, y, z}]

{a, x, b, y, c, z}

>> Riffle[{a, b, c, d, e, f}, {x
, y, z}]

{a, x, b, y, c, z, d, x, e, y, f }

118

Select

>> Select[{-3, 0, 1, 3, a},
#>0&]

{1, 3}

>> Select[f[a, 2, 3], NumberQ]
f [2, 3]

>> Select[a, True]
Nonatomic expression expected.

Select [a, True]

Sow

Sow[e]
sends the value e to the innermost
Reap.

Sow[e, tag]
sows e using tag. Sow[e] is equivalent
to Sow[e, Null].

Sow[e, {tag1, tag2, ...}]
uses multiple tags.

Span

Span is the head of span ranges like 1;;3.
>> ;; // FullForm

Span [1, All]

>> 1;;4;;2 // FullForm
Span [1, 4, 2]

>> 2;;-2 // FullForm
Span [2, − 2]

>> ;;3 // FullForm
Span [1, 3]

Split

Split[list]
splits list into collections of consecu-
tive identical elements.

Split[list, test]
splits list based on whether the func-
tion test yields True on consecutive
elements.

>> Split[{x, x, x, y, x, y, y, z
}]

{{x, x, x} , {y} , {x} , {y, y} , {z}}

Split into increasing or decreasing runs of el-
ements
>> Split[{1, 5, 6, 3, 6, 1, 6,

3, 4, 5, 4}, Less]

{{1, 5, 6} , {3, 6} , {1,
6} , {3, 4, 5} , {4}}

>> Split[{1, 5, 6, 3, 6, 1, 6,
3, 4, 5, 4}, Greater]

{{1} , {5} , {6, 3} , {6,
1} , {6, 3} , {4} , {5, 4}}

Split based on first element
>> Split[{x -> a, x -> y, 2 -> a

, z -> c, z -> a}, First[#1]
=== First[#2] &]

{{x->a, x->y} ,
{2->a} , {z->c, z->a}}

SplitBy

Split[list, f]
splits list into collections of consecu-
tive elements that give the same re-
sult when f is applied.

>> SplitBy[Range[1, 3, 1/3],
Round]{{

1,
4
3

}
,
{

5
3

, 2,
7
3

}
,
{

8
3

, 3
}}

119

>> SplitBy[{1, 2, 1, 1.2}, {
Round, Identity}]

{{{1}} , {{2}} , {{1} , {1.2}}}

>> SplitBy[{1, 2, 1, 1.2}, {
Round, Identity}]

{{{1}} , {{2}} , {{1} , {1.2}}}

Table

>> Table[x, {4}]

{x, x, x, x}

>> n = 0;

>> Table[n = n + 1, {5}]

{1, 2, 3, 4, 5}

>> Table[i, {i, 4}]

{1, 2, 3, 4}

>> Table[i, {i, 2, 5}]

{2, 3, 4, 5}

>> Table[i, {i, 2, 6, 2}]

{2, 4, 6}

>> Table[i, {i, Pi, 2 Pi, Pi /
2}]{

Pi,
3Pi
2

, 2Pi
}

>> Table[x^2, {x, {a, b, c}}]{
a2, b2, c2}

Table supports multi-dimensional tables:
>> Table[{i, j}, {i, {a, b}}, {j

, 1, 2}]

{{{a, 1} , {a, 2}} , {{b, 1} , {b, 2}}}

Take

>> Take[{a, b, c, d}, 3]

{a, b, c}

>> Take[{a, b, c, d}, -2]

{c, d}

>> Take[{a, b, c, d, e}, {2,
-2}]

{b, c, d}

Take a submatrix:
>> A = {{a, b, c}, {d, e, f}};

>> Take[A, 2, 2]

{{a, b} , {d, e}}

Take a single column:
>> Take[A, All, {2}]

{{b} , {e}}

Tuples

Tuples[list, n]
returns a list of all n-tuples of ele-
ments in list.

Tuples[{list1, list2, ...}]
returns a list of tuples with elements
from the given lists.

>> Tuples[{a, b, c}, 2]

{{a, a} , {a, b} , {a, c} ,
{b, a} , {b, b} , {b, c} ,
{c, a} , {c, b} , {c, c}}

>> Tuples[{}, 2]

{}

>> Tuples[{a, b, c}, 0]

{{}}

>> Tuples[{{a, b}, {1, 2, 3}}]

{{a, 1} , {a, 2} , {a, 3} ,
{b, 1} , {b, 2} , {b, 3}}

The head of list need not be List:

120

>> Tuples[f[a, b, c], 2]

{ f [a, a] , f [a, b] , f [a, c] ,
f [b, a] , f [b, b] , f [b, c] ,
f [c, a] , f [c, b] , f [c, c]}

However, when specifying multiple expres-
sions, List is always used:
>> Tuples[{f[a, b], g[c, d]}]

{{a, c} , {a, d} , {b, c} , {b, d}}

UnitVector

>> UnitVector[2]
{0, 1}

>> UnitVector[4, 3]

{0, 0, 1, 0}

121

XX. Logic

Contents

And (&&) 122 Not (!) 122 Or (||) 122

And (&&)

And[expr1, expr2, ...]
evaluates expressions until one eval-
uation results in False, in which case
And returns False. If all expressions
evaluate to True, And returns True.

>> True && True && False
False

>> a && b && True && c
a&&b&&c

Not (!)

Not negates a logical expression.
>> !True

False

>> !False
True

>> !b
! b

Or (||)

Or[expr1, expr2, ...] evaluates expres-
sions until one evaluation results in True,
in which case Or returns True. If all expres-
sions evaluate to False, Or returns False.

>> False || True
True

>> a || False || b
a||b

122

XXI. Number theoretic functions

Contents

CoprimeQ 123
EvenQ 123
FactorInteger 123
GCD 124
IntegerExponent . . 124

LCM 124
Mod 124
NextPrime 124
OddQ 124
PowerMod 125

Prime 125
PrimePi 125
PrimePowerQ 125
PrimeQ 125
RandomPrime 126

CoprimeQ

Test whether two numbers are coprime by
computing their greatest common divisor
>> CoprimeQ[7, 9]

True

>> CoprimeQ[-4, 9]

True

>> CoprimeQ[12, 15]

False

CoprimeQ also works for complex numbers
>> CoprimeQ[1+2I, 1-I]

True

>> CoprimeQ[4+2I, 6+3I]

False

>> CoprimeQ[2, 3, 5]

True

>> CoprimeQ[2, 4, 5]

False

EvenQ

>> EvenQ[4]
True

>> EvenQ[-3]
False

>> EvenQ[n]
False

FactorInteger

FactorInteger[n]
returns the factorization of n as a list
of factors and exponents.

>> factors = FactorInteger[2010]

{{2, 1} , {3, 1} , {5, 1} , {67, 1}}

To get back the original number:
>> Times @@ Power @@@ factors

2 010

FactorInteger factors rationals using neg-
ative exponents:
>> FactorInteger[2010 / 2011]

{{2, 1} , {3, 1} , {5, 1} ,
{67, 1} , {2 011, − 1}}

123

GCD

GCD[n1, n2, ...]
computes the greatest common divi-
sor of the given integers.

>> GCD[20, 30]
10

>> GCD[10, y]

GCD
[
10, y

]
GCD is Listable:
>> GCD[4, {10, 11, 12, 13, 14}]

{2, 1, 4, 1, 2}

GCD does not work for rational numbers and
Gaussian integers yet.

IntegerExponent

IntegerExponent[n, b]
gives the highest exponent of b that
divides n.

>> IntegerExponent[16, 2]

4

>> IntegerExponent[-510000]

4

>> IntegerExponent[10, b]

IntegerExponent [10, b]

LCM

LCM[n1, n2, ...]
computes the least common multiple
of the given integers.

>> LCM[15, 20]
60

>> LCM[20, 30, 40, 50]
600

Mod

>> Mod[14, 6]
2

>> Mod[-3, 4]
1

>> Mod[-3, -4]
−3

>> Mod[5, 0]
The argument 0 should be nonzero.

Mod [5, 0]

NextPrime

NextPrime[n]
gives the next prime after n.

NextPrime[n,k]
gives the kth prime after n.

>> NextPrime[10000]
10 007

>> NextPrime[100, -5]
73

>> NextPrime[10, -5]
−2

>> NextPrime[100, 5]
113

>> NextPrime[5.5, 100]
563

>> NextPrime[5, 10.5]
NextPrime [5, 10.5]

OddQ

>> OddQ[-3]
True

>> OddQ[0]
False

124

PowerMod

>> PowerMod[2, 10000000, 3]
1

>> PowerMod[3, -2, 10]
9

>> PowerMod[0, -1, 2]
0 is not invertible modulo 2.
PowerMod [0, − 1, 2]

>> PowerMod[5, 2, 0]
The argument 0 should be nonzero.

PowerMod [5, 2, 0]

PowerMod does not support rational coeffi-
cients (roots) yet.

Prime

Prime[n]
returns the nth prime number.

>> Prime[1]
2

>> Prime[167]
991

PrimePi

PrimePi[x]
gives the number of primes less than
or equal to x

>> PrimePi[100]
25

>> PrimePi[-1]
0

>> PrimePi[3.5]
2

>> PrimePi[E]
1

PrimePowerQ

Tests wheter a number is a prime power
>> PrimePowerQ[9]

True

>> PrimePowerQ[52142]
False

>> PrimePowerQ[-8]
True

>> PrimePowerQ[371293]
True

PrimeQ

For very large numbers, PrimeQ uses proba-
bilistic prime testing, so it might be wrong
sometimes (a number might be composite
even though PrimeQ says it is prime). The
algorithm might be changed in the future.
>> PrimeQ[2]

True

>> PrimeQ[-3]
True

>> PrimeQ[137]
True

>> PrimeQ[2 ^ 127 - 1]
True

All prime numbers between 1 and 100:
>> Select[Range[100], PrimeQ]

{2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97}

PrimeQ has attribute Listable:
>> PrimeQ[Range[20]]

{False, True, True, False, True,
False, True, False, False, False,
True, False, True, False, False,
False, True, False, True, False}

125

RandomPrime

RandomPrime[{imin, $imax}]
gives a random prime between imin
and imax.

’RanomPrime[imax]
gives a random prime between 2 and
imax.

RandomPrime[range, n]
gives a list of n random primes in
range.

>> RandomPrime[{14, 17}]
17

>> RandomPrime[{14, 16}, 1]
There are no primes in

the specified interval.

RandomPrime
[
{14, 16} , 1

]
>> RandomPrime[{8,12}, 3]

{11, 11, 11}

>> RandomPrime[{10,30}, {2,5}]

{{11, 11, 11, 11, 11} ,
{11, 11, 11, 11, 11}}

126

XXII. Numeric evaluation

Support for numeric evaluation with arbitrary precision is just a proof-of-concept. Precision is
not “guarded” through the evaluation process. Only integer precision is supported. However,
things like N[Pi, 100] should work as expected.

Contents

BaseForm 127
Chop 127
IntegerDigits 128

MachinePrecision . . 128
N 129
NumericQ 129

Precision 129
Round 130

BaseForm

BaseForm[expr, n]
prints mumbers in expr in base n.

>> BaseForm[33, 2]
100 0012

>> BaseForm[234, 16]
ea16

>> BaseForm[12.3, 2]
1 100.0100110011001100112

>> BaseForm[-42, 16]
-2a16

>> BaseForm[x, 2]
x

>> BaseForm[12, 3] // FullForm
BaseForm [12, 3]

>> BaseForm[12, -3]
Positive machine-sized

integer expected at position
2 in BaseForm[12, − 3].

MakeBoxes[BaseForm[12,
-3], StandardForm] is
not a valid box structure.

Chop

Chop[expr]
replaces floating point numbers close
to 0 by 0.

Chop[expr, delta]
uses a tolerance of delta. The default
tolerance is 10^-10.

>> Chop[10.0 ^ -16]
0

>> Chop[10.0 ^ -9]

1. × 10-9

>> Chop[10 ^ -11 I]

I
100 000 000 000

>> Chop[0. + 10 ^ -11 I]
0

127

IntegerDigits

IntegerDigits[n]
returns a list of the base-10 digits in
the integer n.

IntegerDigits[n, base]
returns a list of the base-base digits in
n.

IntegerDigits[n, base, length]
returns a list of length length, truncat-
ing or padding with zeroes on the left
as necessary.

>> IntegerDigits[76543]

{7, 6, 5, 4, 3}

The sign of n is discarded:
>> IntegerDigits[-76543]

{7, 6, 5, 4, 3}

>> IntegerDigits[15, 16]

{15}

>> IntegerDigits[1234, 16]

{4, 13, 2}

>> IntegerDigits[1234, 10, 5]

{0, 1, 2, 3, 4}

MachinePrecision

MachinePrecision
is a “pessimistic” (integer) estimation
of the internally used standard preci-
sion.

>> N[MachinePrecision]
18.

N

N[expr, prec]
evaluates expr numerically with a
precision of prec digits.

>> N[Pi, 50]
3.141592653589793238462643˜

˜3832795028841971693993751

>> N[1/7]
0.142857142857142857

>> N[1/7, 5]
0.14286

You can manually assign numerical values
to symbols. When you do not specify a pre-
cision, MachinePrecision is taken.
>> N[a] = 10.9

10.9

>> a
a

N automatically threads over expressions,
except when a symbol has attributes
NHoldAll, NHoldFirst, or NHoldRest.
>> N[a + b]

10.9 + b

>> N[a, 20]
a

>> N[a, 20] = 11;

>> N[a + b, 20]
11. + b

>> N[f[a, b]]
f [10.9, b]

>> SetAttributes[f, NHoldAll]

>> N[f[a, b]]
f [a, b]

The precision can be a pattern:
>> N[c, p_?(#>10&)] := p

128

>> N[c, 3]
c

>> N[c, 11]
11.

You can also use UpSet or TagSet to specify
values for N:
>> N[d] ^= 5;

However, the value will not be stored in
UpValues, but in NValues (as for Set):
>> UpValues[d]

{}

>> NValues[d]
{HoldPattern [N [d,

MachinePrecision]] :>5}

>> e /: N[e] = 6;

>> N[e]
6.

Values for N[expr] must be associated with
the head of expr:
>> f /: N[e[f]] = 7;

Tag f not found or too
deep for an assigned rule.

You can use Condition:
>> N[g[x_, y_], p_] := x + y *

Pi /; x + y > 3

>> SetAttributes[g, NHoldRest]

>> N[g[1, 1]]

g [1., 1]

>> N[g[2, 2]]

8.28318530717958648

NumericQ

NumericQ[expr]
tests whether expr represents a nu-
meric quantity.

>> NumericQ[2]
True

>> NumericQ[Sqrt[Pi]]

True

>> NumberQ[Sqrt[Pi]]

False

Precision

Precision[expr]
examines the number of significant
digits of expr.

This is rather a proof-of-concept than a full
implementation. Precision of compound ex-
pression is not supported yet.
>> Precision[1]

∞

>> Precision[1/2]
∞

>> Precision[0.5]
18.

Round

Round[expr]
rounds expr to the nearest integer.

Round[expr, k]
rounds expr to the closest multiple of
k.

>> Round[10.6]
11

>> Round[0.06, 0.1]
0.1

>> Round[0.04, 0.1]
0

Constants can be rounded too
>> Round[Pi, .5]

3.

129

>> Round[Pi^2]
10

Round to exact value
>> Round[2.6, 1/3]

8
3

>> Round[10, Pi]
3Pi

Round complex numbers
>> Round[6/(2 + 3 I)]

1− I

>> Round[1 + 2 I, 2 I]
2I

Round Negative numbers too
>> Round[-1.4]

−1

Expressions other than numbers remain un-
evaluated:
>> Round[x]

Round [x]

>> Round[1.5, k]
Round [1.5, k]

130

XXIII. Options and default arguments

Contents

Default 131
NotOptionQ 131

OptionQ 132
OptionValue 132

Options 133

Default

Default[f]
gives the default value for an omitted
paramter of f.

Default[f, k]
gives the default value for a parame-
ter on the kth position.

Default[f, k, n]
gives the default value for the kth pa-
rameter out of n.

Assign values to Default to specify default
values.
>> Default[f] = 1

1

>> f[x_.] := x ^ 2

>> f[]
1

Default values are stored in DefaultValues:
>> DefaultValues[f]{

HoldPattern
[
Default

[
f
]]

:>1
}

You can use patterns for k and n:
>> Default[h, k_, n_] := {k, n}

Note that the position of a parameter is rela-
tive to the pattern, not the matching expres-
sion:

>> h[] /. h[___, ___, x_., y_.,
___] -> {x, y}

{{3, 5} , {4, 5}}

NotOptionQ

>> NotOptionQ[x]

True

>> NotOptionQ[2]

True

>> NotOptionQ["abc"]

True

>> NotOptionQ[a -> True]

False

OptionQ

>> OptionQ[a -> True]

True

>> OptionQ[a :> True]

True

>> OptionQ[{a -> True}]

True

>> OptionQ[{a :> True}]

True

131

>> OptionQ[x]

False

OptionValue

OptionValue[name]
gives the value of the option name as
specified in a call to a function with
OptionsPattern.

>> f[a->3] /. f[OptionsPattern
[{}]] -> {OptionValue[a]}

{3}

Unavailable options generate a message:
>> f[a->3] /. f[OptionsPattern

[{}]] -> {OptionValue[b]}

Option name b not found.

{OptionValue [b]}

The argument of OptionValue must be a
symbol:
>> f[a->3] /. f[OptionsPattern

[{}]] -> {OptionValue[a+b]}

Argument a + b at position
1 is expected to be a symbol.

{OptionValue [a + b]}

However, it can be evaluated dynamically:
>> f[a->5] /. f[OptionsPattern

[{}]] -> {OptionValue[Symbol
["a"]]}

{5}

Options

Options[f]
gives a list of optional arguments to f
and their default values.

You can assign values to Options to specify
options.

>> Options[f] = {n -> 2}

{n->2}

>> Options[f]

{n:>2}

>> f[x_, OptionsPattern[f]] := x
^ OptionValue[n]

>> f[x]

x2

>> f[x, n -> 3]

x3

Delayed option rules are evaluated just
when the corresponding OptionValue is
called:
>> f[a :> Print["value"]] /. f[

OptionsPattern[{}]] :> (
OptionValue[a]; Print["
between"]; OptionValue[a]);

value
between
value

In contrast to that, normal option rules are
evaluated immediately:
>> f[a -> Print["value"]] /. f[

OptionsPattern[{}]] :> (
OptionValue[a]; Print["
between"]; OptionValue[a]);

value
between

Options must be rules or delayed rules:
>> Options[f] = {a}

{a} is not a valid
list of option rules.

{a}

A single rule need not be given inside a list:
>> Options[f] = a -> b

a->b

>> Options[f]

{a:>b}

132

Options can only be assigned to symbols:
>> Options[a + b] = {a -> b}

Argument a + b at position
1 is expected to be a symbol.

{a->b}

133

XXIV. Patterns and rules

Some examples:
>> a + b + c /. a + b -> t

c + t

>> a + 2 + b + c + x * y /.
n_Integer + s__Symbol + rest_
-> {n, s, rest}

{2, a, b + c + xy}

>> f[a, b, c, d] /. f[first_,
rest___] -> {first, {rest}}

{a, {b, c, d}}

Tests and Conditions:
>> f[4] /. f[x_?(# > 0&)] -> x ^

2

16

>> f[4] /. f[x_] /; x > 0 -> x ^
2

16

Leaves in the beginning of a pattern rather
match fewer leaves:
>> f[a, b, c, d] /. f[start__,

end__] -> {{start}, {end}}

{{a} , {b, c, d}}

Optional arguments using Optional:
>> f[a] /. f[x_, y_:3] -> {x, y}

{a, 3}

Options using OptionsPattern and
OptionValue:
>> f[y, a->3] /. f[x_,

OptionsPattern[{a->2, b->5}]]
-> {x, OptionValue[a],

OptionValue[b]}

{y, 3, 5}

The attributes Flat, Orderless, and
OneIdentity affect pattern matching.

Contents

Alternatives (|) . . . 134
Blank 134
BlankNullSequence 135
BlankSequence . . . 135
Condition (/;) 135
HoldPattern 135
MatchQ 135

Optional (:) 135
OptionsPattern . . . 136
PatternTest (?) 136
Pattern 136
Repeated (..) 137
RepeatedNull (...) . 137
ReplaceAll (/.) . . . 137

ReplaceList 138
ReplaceRepeated

(//.) 138
RuleDelayed (:>) . . 138
Rule (->) 138
Verbatim 138

Alternatives (|)

>> a+b+c+d/.(a|b)->t
c + d + 2t

Blank

BlankNullSequence

>> ___symbol

___symbol

134

>> ___symbol //FullForm

BlankNullSequence
[
symbol

]

BlankSequence

Condition (/;)

Condition sets a condition on the pattern to
match, using variables of the pattern.
>> f[3] /. f[x_] /; x>0 -> t

t

>> f[-3] /. f[x_] /; x>0 -> t
f [− 3]

Condition can be used in an assignment:
>> f[x_] := p[x] /; x>0

>> f[3]
p [3]

>> f[-3]
f [− 3]

HoldPattern

HoldPattern[expr] is equivalent to expr for
pattern matching, but maintains it in an un-
evaluated form.
>> HoldPattern[x + x]

HoldPattern [x + x]

>> x /. HoldPattern[x] -> t
t

HoldPattern has attribute HoldAll:
>> Attributes[HoldPattern]

{HoldAll, Protected}

MatchQ

MatchQ[expr, form]
tests whether expr matches form.

>> MatchQ[123, _Integer]

True

>> MatchQ[123, _Real]
False

Optional (:)

Optional[patt, default] or patt : default
is a pattern which matches patt and
which, if omitted should be replaced
by default.

>> f[x_, y_:1] := {x, y}

>> f[1, 2]

{1, 2}

>> f[a]
{a, 1}

Note that symb : patt represents a Pattern
object. However, there is no disambiguity,
since symb has to be a symbol in this case.
>> x:_ // FullForm

Pattern [x, Blank []]

>> _:d // FullForm
Optional [Blank [] , d]

>> x:_+y_:d // FullForm

Pattern
[
x, Plus

[
Blank [

] , Optional
[
Pattern

[
y, Blank []

]
, d
]]]

s_. is equivalent to Optional[s_] and rep-
resents an optional parameter which, if
omitted, gets its value from Default.
>> FullForm[s_.]

Optional [Pattern [s, Blank []]]

>> Default[h, k_] := k

>> h[a] /. h[x_, y_.] -> {x, y}

{a, 2}

135

OptionsPattern

OptionsPattern[f]
is a pattern that stands for a sequence
of options given to a function, with
default values taken from Options[
f]. The options can be of the form
opt->value or opt:>value, and might
be in arbitrarily nested lists.

OptionsPattern[{opt1->value1, ...}]
takes explicit default values from the
given list. The list may also contain
symbols f, for which Options[f] is
taken into account; it may be arbi-
trarily nested. OptionsPattern[{}]
does not use any default values.

The option values can be accessed using
OptionValue.
>> f[x_, OptionsPattern[{n->2}]]

:= x ^ OptionValue[n]

>> f[x]

x2

>> f[x, n->3]

x3

Delayed rules as options:
>> e = f[x, n:>a]

xa

>> a = 5;

>> e
x5

Options might be given in nested lists:
>> f[x, {{{n->4}}}]

x4

PatternTest (?)

>> MatchQ[3, _Integer?(#>0&)]

True

>> MatchQ[-3, _Integer?(#>0&)]

False

Pattern

Pattern[symb, patt] or symb : patt
assigns the name symb to the pattern
patt.

symb_head
is equivalent to symb : _head (ac-
cordingly with __ and ___).

symb : patt : default
is a pattern with name symb and
default value default, equivalent to
Optional[patt : symb, default].

>> FullForm[a_b]
Pattern [a, Blank [b]]

>> FullForm[a:_:b]
Optional [Pattern [a, Blank []] , b]

Pattern has attribute HoldFirst, so it does
not evaluate its name:
>> x = 2

2

>> x_
x_

Nested Pattern assign multiple names to
the same pattern. Still, the last parameter is
the default value.
>> f[y] /. f[a:b:_:d] -> {a, b}

{y, y}

This is equivalent to:
>> f[] /. f[a:b_:d] -> {a, b}

{d, d}

FullForm:
>> FullForm[a:b:c:d:e]

Optional
[
Pattern [a, b] ,

Optional [Pattern [c, d] , e]
]

136

Repeated (..)

>> a_Integer.. // FullForm

Repeated
[
Pattern

[
a, Blank

[
Integer

]]]
>> 0..1//FullForm

Repeated [0]

>> {{}, {a}, {a, b}, {a, a, a},
{a, a, a, a}} /. {Repeated[x
: a | b, 3]} -> x

{{} , a, {a, b} , a, {a, a, a, a}}

>> f[x, 0, 0, 0] /. f[x, s:0..]
-> s

Sequence [0, 0, 0]

RepeatedNull (...)

>> a___Integer...//FullForm

RepeatedNull
[
Pattern

[
a,

BlankNullSequence
[
Integer

]]]
>> f[x] /. f[x, 0...] -> t

t

ReplaceAll (/.)

>> a+b+c /. c->d
a + b + d

>> g[a+b+c,a]/.g[x_+y_,x_]->{x,y
}

{a, b + c}

If rules is a list of lists, a list of all possible
respective replacements is returned:
>> {a, b} /. {{a->x, b->y}, {a->

u, b->v}}

{{x, y} , {u, v}}

The list can be arbitrarily nested:

>> {a, b} /. {{{a->x, b->y}, {a
->w, b->z}}, {a->u, b->v}}

{{{x, y} , {w, z}} , {u, v}}

>> {a, b} /. {{{a->x, b->y}, a->
w, b->z}, {a->u, b->v}}

Elements of {{a->x,
b->y} , a->w, b->z} are a
mixture of lists and nonlists.
{{a, b}/. {{a->x, b->y} ,

a->w, b->z} , {u, v}}

ReplaceList

Get all subsequences of a list:
>> ReplaceList[{a, b, c}, {___,

x__, ___} -> {x}]

{{a} , {a, b} , {a, b,
c} , {b} , {b, c} , {c}}

You can specify the maximum number of
items:
>> ReplaceList[{a, b, c}, {___,

x__, ___} -> {x}, 3]

{{a} , {a, b} , {a, b, c}}

>> ReplaceList[{a, b, c}, {___,
x__, ___} -> {x}, 0]

{}

If no rule matches, an empty list is returned:
>> ReplaceList[a, b->x]

{}

Like in ReplaceAll, rules can be a nested
list:
>> ReplaceList[{a, b, c}, {{{___

, x__, ___} -> {x}}, {{a, b,
c} -> t}}, 2]

{{{a} , {a, b}} , {t}}

137

>> ReplaceList[expr, {}, -1]

Non-negative integer or
Infinity expected at position 3.

ReplaceList
[
expr, {} , − 1

]
Possible matches for a sum:
>> ReplaceList[a + b + c, x_ +

y_ -> {x, y}]

{{a, b + c} , {b, a + c} , {c, a + b} ,
{a + b, c} , {a + c, b} , {b + c, a}}

ReplaceRepeated (//.)

>> a+b+c //. c->d
a + b + d

Simplification of logarithms:
>> logrules = {Log[x_ * y_] :>

Log[x] + Log[y], Log[x_ ^ y_]
:> y * Log[x]};

>> Log[a * (b * c)^ d ^ e * f]
//. logrules

Log [a] + Log
[

f
]

+
(
Log [b] + Log [c]

)
de

ReplaceAll just performs a single replace-
ment:
>> Log[a * (b * c)^ d ^ e * f]

/. logrules

Log [a] + Log
[

f (bc)de
]

RuleDelayed (:>)

>> Attributes[RuleDelayed]

{HoldRest, Protected,
SequenceHold}

Rule (->)

>> a+b+c /. c->d
a + b + d

>> {x,x^2,y} /. x->3

{3, 9, y}

Verbatim

>> _ /. Verbatim[_]->t
t

>> x /. Verbatim[_]->t
x

>> x /. _->t
t

138

XXV. Plotting

Contents

ColorData 139
ColorDataFunction . 139
DensityPlot 140
ListLinePlot 140

ListPlot 140
Mesh 141
ParametricPlot 142
Plot 143

Plot3D 143
PolarPlot 144

ColorData

ColorDataFunction

DensityPlot

DensityPlot[f, {x, xmin, xmax}, {y,
ymin, ymax}]

plots a density plot of f with x rang-
ing from xmin to xmax and y ranging
from ymin to ymax.

>> DensityPlot[x ^ 2 + 1 / y, {x
, -1, 1}, {y, 1, 4}]

>> DensityPlot[1 / x, {x, 0, 1},
{y, 0, 1}]

>> DensityPlot[Sqrt[x * y], {x,
-1, 1}, {y, -1, 1}]

139

>> DensityPlot[1/(x^2 + y^2 + 1)
, {x, -1, 1}, {y, -2,2}, Mesh
->Full]

>> DensityPlot[x^2 y, {x, -1,
1}, {y, -1, 1}, Mesh->All]

ListLinePlot

ListLinePlot[{y_1, y_2, ...}]
plots a line through a list of y-values,
assuming integer x-values 1, 2, 3, ...

ListLinePlot[{{x_1, y_1}, {x_2,
y_2}, ...}]

plots a line through a list of x,y pairs.
ListLinePlot[{list_1, list_2, ...}]

plots several lines.

>> ListLinePlot[Table[{n, n ^
0.5}, {n, 10}]]

4. 6. 8. 10.

1.5

2.

2.5

3.

>> ListLinePlot[{{-2, -1}, {-1,
-1}}]

−1.8−1.6−1.4−1.2 −1.

−2.

−1.5

−1.

−0.5

ListPlot

ListPlot[{y_1, y_2, ...}]
plots a list of y-values, assuming in-
teger x-values 1, 2, 3, ...

ListPlot[{{x_1, y_1}, {x_2, y_2},
...}]

plots a list of x,y pairs.
ListPlot[{list_1, list_2, ...}]

plots a several lists of points.

>> ListPlot[Table[n ^ 2, {n,
10}]]

4. 6. 8. 10.

20.

40.

60.

80.

100.

140

Mesh

Mesh
is an option for Plot that specifies
the mesh to be drawn. The default is
Mesh->None.

>> Plot[Sin[Cos[x^2]],{x,-4,4},
Mesh->All]

−4. −2. 2. 4.

−0.5

0.5

>> Plot[Sin[x], {x,0,4 Pi}, Mesh
->Full]

2. 4. 6. 8. 10. 12.

−1.

−0.5

0.5

1.

»DensityPlot[Sin[x y], {x, -2, 2}, {y, -2, 2},
Mesh->Full] = -Graphics-
»Plot3D[Sin[x y], {x, -2, 2}, {y, -2, 2}, Mesh-
>Full] = -Graphics3D-

ParametricPlot

ParametricPlot[{f_x, f_y}, {u, umin,
umax}]

plots parametric function f with
paramater u ranging from umin to
umax.

ParametricPlot[{{f_x, f_y}, {g_x,
g_y}, ...}, {u, umin, umax}]

plots several parametric functions f,
g, ...

ParametricPlot[{f_x, f_y}, {u, umin,
umax}, {v, vmin, vmax}]

plots a parametric area.
ParametricPlot[{{f_x, f_y}, {g_x,
g_y}, ...}, {u, umin, umax}, {v,
vmin, vmax}]

plots several parametric areas.

>> ParametricPlot[{Sin[u], Cos[3
u]}, {u, 0, 2 Pi}]

−1. −0.5 0.5 1.

−1.

−0.5

0.5

1.

>> ParametricPlot[{Cos[u] / u,
Sin[u] / u}, {u, 0, 50},
PlotRange->0.5]

−0.4 −0.2 0.2 0.4

−0.4

−0.2

0.2

0.4

141

>> ParametricPlot[{{Sin[u], Cos[
u]},{0.6 Sin[u], 0.6 Cos[u]},
{0.2 Sin[u], 0.2 Cos[u]}}, {

u, 0, 2 Pi}, PlotRange->1,
AspectRatio->1]

−1. −0.5 0.5 1.

−1.

−0.5

0.5

1.

Plot

Plot[f, {x, xmin, xmax}]
plots f with x ranging from xmin to
xmax.

Plot[{f1, f2, ...}, {x, xmin,
xmax}]

plots several functions f1, f2, ...

>> Plot[{Sin[x], Cos[x], x / 3},
{x, -Pi, Pi}]

−3. −2. −1. 1. 2. 3.

−1.

−0.5

0.5

1.

>> Plot[Sin[x], {x, 0, 4 Pi},
PlotRange->{{0, 4 Pi}, {0,
1.5}}]

2. 4. 6. 8. 10. 12.

0.5

1.

1.5

>> Plot[Tan[x], {x, -6, 6}, Mesh
->Full]

−6. −4. −2. 2. 4. 6.

−15.

−10.

−5.

5.

10.

15.

>> Plot[x^2, {x, -1, 1},
MaxRecursion->5, Mesh->All]

−1. −0.5 0.5 1.

0.2

0.4

0.6

0.8

>> Plot[Log[x], {x, 0, 5},
MaxRecursion->0]

1. 2. 3. 4. 5.

−1.
−0.5

0.5
1.
1.5

142

>> Plot[Tan[x], {x, 0, 6}, Mesh
->All, PlotRange->{{-1, 5},
{0, 15}}, MaxRecursion->10]

−1. 1. 2. 3. 4. 5.

5.

10.

15.

A constant function:
>> Plot[3, {x, 0, 1}]

0.2 0.4 0.6 0.8 1.

1.

2.

3.

4.

5.

6.

Plot3D

Plot3D[f, {x, xmin, xmax}, {y,
ymin, ymax}]

creates a three-dimensional plot of f
with x ranging from xmin to xmax and
y ranging from ymin to ymax.

>> Plot3D[x ^ 2 + 1 / y, {x, -1,
1}, {y, 1, 4}]

>> Plot3D[x y / (x ^ 2 + y ^ 2 +
1), {x, -2, 2}, {y, -2, 2}]

>> Plot3D[x / (x ^ 2 + y ^ 2 +
1), {x, -2, 2}, {y, -2, 2},
Mesh->None]

>> Plot3D[Sin[x y] /(x y), {x,
-3, 3}, {y, -3, 3}, Mesh->All
]

143

PolarPlot

PolarPlot[r, {t, tmin, tmax}]
plots blah

>> PolarPlot[Cos[5t], {t, 0, Pi
}]

−0.5 0.5 1.

−1.

−0.5

0.5

1.

>> PolarPlot[{1, 1 + Sin[20 t] /
5}, {t, 0, 2 Pi}]

−1. −0.5 0.5 1.

−1.

−0.5

0.5

1.

144

XXVI. Physical and Chemical data

Contents

ElementData 146

ElementData

’ElementData["name“, ”property"]
gives the value of the property for the
chemical specified by name".

’ElementData[n, "property"]
gives the value of the property for the
nth chemical element".

>> ElementData[74]
Tungsten

>> ElementData["He", "
AbsoluteBoilingPoint"]

4.22

>> ElementData["Carbon", "
IonizationEnergies"]

{1 086.5, 2 352.6, 4 620.5
, 6 222.7, 37 831, 47 277.}

>> ElementData[16, "
ElectronConfigurationString"]

[Ne] 3s2 3p4

>> ElementData[73, "
ElectronConfiguration"]

{{2} , {2, 6} , {2, 6, 10} , {2,
6, 10, 14} , {2, 6, 3} , {2}}

The number of known elements:
>> Length[ElementData[All]]

118

Some properties are not appropriate for cer-
tain elements:
>> ElementData["He", "

ElectroNegativity"]

Missing
[
NotApplicable

]
Some data is missing:
>> ElementData["Tc", "

SpecificHeat"]

Missing [NotAvailable]

All the known properties:

145

>> ElementData["Properties"]

{Abbreviation,
AbsoluteBoilingPoint,
AbsoluteMeltingPoint,
AtomicNumber, AtomicRadius,
AtomicWeight, Block,
BoilingPoint, BrinellHardness,
BulkModulus, CovalentRadius,
CrustAbundance,
Density, DiscoveryYear,
ElectroNegativity,
ElectronAffinity,
ElectronConfiguration,
ElectronConfigurationString,
ElectronShellConfiguration,
FusionHeat, Group,
IonizationEnergies,
LiquidDensity, MeltingPoint,
MohsHardness, Name,
Period, PoissonRatio,
Series, ShearModulus,
SpecificHeat, StandardName,
ThermalConductivity,
VanDerWaalsRadius,
VaporizationHeat,
VickersHardness,
YoungModulus}

>> ListPlot[Table[ElementData[z,
"AtomicWeight"], {z, 118}]]

20. 40. 60. 80. 100.120.

50.
100.
150.
200.
250.
300.

146

XXVII. Random number generation

Random numbers are generated using the Mersenne Twister.

Contents

RandomComplex . . 147
RandomInteger . . . 148

RandomReal 148
$RandomState 149

SeedRandom 149

RandomComplex

RandomComplex[{z_min, z_max}]
yields a pseudorandom complex
number in the rectangle with com-
plex corners z_min and z_max.

RandomComplex[z_max]
yields a pseudorandom complex
number in the rectangle with corners
at the origin and at z_max.

RandomComplex[]
yields a pseudorandom complex
number with real and imaginary
parts from 0 to 1.

RandomComplex[range, n]
gives a list of n pseudorandom com-
plex numbers.

RandomComplex[range, {n1, n2, ...}]
gives a nested list of pseudorandom
complex numbers.

>> RandomComplex[]

0.226465749633 + 0.0882690890966I

>> RandomComplex[{1+I, 5+5I}]

1.54952356235 + 1.48430393738I

>> RandomComplex[1+I, 5]

{0.330414687936 + 0.561087820˜
˜219I, 0.347955201414 + 0.571˜
˜682357102I, 0.222418511073 +
0.228964220814I, 0.422015708˜
˜824 + 0.834105454611I, 0.752˜
˜466526205 + 0.143428761001I}

>> RandomComplex[{1+I, 2+2I},
{2, 2}]

{{1.84473350213 + 1.395276˜
˜11471I, 1.31759591341 + 1.324˜
˜71093918I} , {1.69078866928
+ 1.82249996194I, 1.541238˜
˜53783 + 1.57445610936I}}

147

RandomInteger

RandomInteger[{min, max}]
yields a pseudorandom integer in the
range from min to max.

RandomInteger[max]
yields a pseudorandom integer in the
range from 0 to max.

RandomInteger[]
gives 0 or 1.

RandomInteger[range, n]
gives a list of n pseudorandom inte-
gers.

RandomInteger[range, {n1, n2, ...}]
gives a nested list of pseudorandom
integers.

>> RandomInteger[{1, 5}]

1

>> RandomInteger[100, {2, 3}] //
TableForm

50 32 85
94 43 22

Calling RandomInteger changes $RandomState:
>> previousState = $RandomState;

>> RandomInteger[]

1

>> $RandomState != previousState

True

RandomReal

RandomReal[{min, max}]
yields a pseudorandom real number
in the range from min to max.

RandomReal[max]
yields a pseudorandom real number
in the range from 0 to max.

RandomReal[]
yields a pseudorandom real number
in the range from 0 to 1.

RandomReal[range, n]
gives a list of n pseudorandom real
numbers.

RandomReal[range, {n1, n2, ...}]
gives a nested list of pseudorandom
real numbers.

>> RandomReal[]
0.397528468381

>> RandomReal[{1, 5}]
4.96588896521

$RandomState

$RandomState
is a long number representing the
internal state of the pseudorandom
number generator.

>> Mod[$RandomState, 10^100]
8 077 629 053 499 297 928 ˜

˜660 197 146 613 941 486 ˜
˜112 366 717 108 811 638 176 ˜
˜730 189 983 773 255 541 801 ˜
˜934 790 844 081 687 890 478

>> IntegerLength[$RandomState]

18 153

So far, it is not possible to assign values to
$RandomState.

148

>> $RandomState = 42
It is not possible to

change the random state.

42

Not even to its own value:
>> $RandomState = $RandomState;

It is not possible to
change the random state.

SeedRandom

SeedRandom[n]
resets the pseudorandom generator
with seed n.

SeedRandom[]
uses the current date and time as
seed.

SeedRandom can be used to get reproducible
random numbers:
>> SeedRandom[42]

>> RandomInteger[100]

64

>> RandomInteger[100]
2

>> SeedRandom[42]

>> RandomInteger[100]

64

>> RandomInteger[100]
2

String seeds are supported as well:
>> SeedRandom["Mathics"]

>> RandomInteger[100]
60

149

XXVIII. Recurrence relation solvers

Contents

RSolve 150

RSolve

RSolve[eqn, $a[n]$, n]
solves a recurrence equation for the
function $a[n]$.

>> RSolve[a[n] == a[n+1], a[n],
n]

{{a [n] ->C [0]}}

No boundary conditions gives two general
paramaters:
>> RSolve[{a[n + 2] == a[n]}, a,

n]{{
a->
(
Function

[
{n} ,

C [0] + C [1]− 1n])}}
One boundary condition:
>> RSolve[{a[n + 2] == a[n], a

[0] == 1}, a, n]{{
a->
(
Function

[
{n} ,

1− C [1] + C [1]− 1n])}}
Two boundary conditions:
>> RSolve[{a[n + 2] == a[n], a

[0] == 1, a[1] == 4}, a, n]{{
a->
(

Function
[

{n} ,
5
2
− 3− 1n

2

])}}

150

XXIX. Special functions

Contents

AiryAi 151
AiryAiZero 151
AiryBi 152
AiryBiZero 152
AngerJ 152
BesselI 152
BesselJ 152
BesselJZero 153
BesselK 153
BesselY 153
BesselYZero 153

ChebyshevT 153
ChebyshevU 154
Erf 154
GegenbauerC 154
HankelH1 154
HankelH2 154
HermiteH 154
JacobiP 155
KelvinBei 155
KelvinBer 155
KelvinKei 155

KelvinKer 156
LaguerreL 156
LegendreP 156
LegendreQ 157
ProductLog 157
SphericalHarmonicY 157
StruveH 158
StruveL 158
WeberE 158
Zeta 158

AiryAi

AiryAi[x]
returns the Airy function Ai(x).

>> AiryAi[0.5]

0.23169360648083349

>> AiryAi[0.5 + I]

0.157118446499986172−
0.241039813840210768I

>> Plot[AiryAi[x], {x, -10, 10}]

−10. −5. 5. 10.

−0.4

−0.2

0.2

0.4

AiryAiZero

AiryAiZero[k]
returns the kth zero of the Airy func-
tion Ai(z).

>> N[AiryAiZero[1]]

−2.33810741045976704

AiryBi

AiryBi[x]
returns the Airy function Bi(x).

>> AiryBi[0.5]

0.854277043103155493

>> AiryBi[0.5 + I]

0.688145273113482414 +
0.370815390737010831I

151

>> Plot[AiryBi[x], {x, -10, 2}]

−10. −8. −6. −4. −2. 2.
−0.5

0.5

1.

1.5

AiryBiZero

AiryBiZero[k]
returns the kth zero of the Airy func-
tion Bi(z).

>> N[AiryBiZero[1]]

−1.17371322270912792

AngerJ

AngerJ[n, z]
returns the Anger function J_n(z).

>> AngerJ[1.5, 3.5]

0.294478574459563408

>> Plot[AngerJ[1, x], {x, -10,
10}]

−10. −5. 5. 10.

−0.6
−0.4
−0.2

0.2
0.4
0.6

BesselI

BesselI[n, z]
returns the modified Bessel function
of the first kind I_n(z).

>> BesselI[1.5, 4]
8.17263323168659544

>> Plot[BesselI[0, x], {x, 0,
5}]

1. 2. 3. 4. 5.

5.

10.

15.

20.

BesselJ

BesselJ[n, z]
returns the Bessel function of the first
kind J_n(z).

>> BesselJ[0, 5.2]
−0.11029043979098654

>> Plot[BesselJ[0, x], {x, 0,
10}]

2. 4. 6. 8. 10.
−0.4
−0.2

0.2
0.4
0.6
0.8

152

BesselJZero

BesselJZero[n, k]
returns the kth zero of the Bessel
function of the first kind J_n(z).

>> N[BesselJZero[0, 1]]
2.40482555769577277

BesselK

BesselK[n, z]
returns the modified Bessel function
of the second kind K_n(z).

>> BesselK[1.5, 4]
0.0143470307207600668

>> Plot[BesselK[0, x], {x, 0,
5}]

1. 2. 3. 4. 5.

0.2
0.4
0.6
0.8
1.
1.2

BesselY

BesselY[n, z]
returns the Bessel function of the sec-
ond kind Y_n(z).

>> BesselY[1.5, 4]
0.367112032460934155

>> Plot[BesselY[0, x], {x, 0,
10}]

2. 4. 6. 8. 10.

−0.4

−0.2

0.2

0.4

BesselYZero

BesselJZero[n, k]
returns the kth zero of the Bessel
function of the second kind Y_n(z).

>> N[BesselYZero[0, 1]]
0.893576966279167522

ChebyshevT

ChebyshevT[n, x]
returns the Chebyshev polynomial of
the first kind T_n(x).

>> ChebyshevT[8, x]

1− 32x2 + 160x4 − 256x6 + 128x8

>> ChebyshevT[1 - I, 0.5]

0.800143428851193116
+ 1.08198360440499884I

ChebyshevU

ChebyshevU[n, x]
returns the Chebyshev polynomial of
the second kind U_n(x).

>> ChebyshevU[8, x]

1− 40x2 + 240x4 − 448x6 + 256x8

153

>> ChebyshevU[1 - I, 0.5]

1.60028685770238623 +
0.721322402936665892I

Erf

Erf[z]
returns the error function of z.

>> Erf[1.0]
0.842700792949714869

>> Erf[0]
0

>> Plot[Erf[x], {x, -2, 2}]

−2. −1. 1. 2.

−1.

−0.5

0.5

1.

GegenbauerC

GegenbauerC[n, m, x]
returns the Generbauer polynomial
C_n∧(m)(x).

>> GegenbauerC[6, 1, x]

−1 + 24x2 − 80x4 + 64x6

>> GegenbauerC[4 - I, 1 + 2 I,
0.7]

−3.26209595216525854
− 24.9739397455269944I

HankelH1

HankelH1[n, z]
returns the Hankel function of the
first kind H_n∧1 (z).

>> HankelH1[1.5, 4]
0.185285948354268953 +

0.367112032460934155I

HankelH2

HankelH2[n, z]
returns the Hankel function of the
second kind H_n∧2 (z).

>> HankelH2[1.5, 4]
0.185285948354268953−

0.367112032460934155I

HermiteH

ChebyshevU[n, x]
returns the Hermite polynomial
H_n(x).

>> HermiteH[8, x]

1 680− 13 440x2 + 13 ˜
˜440x4 − 3 584x6 + 256x8

>> HermiteH[3, 1 + I]
−28 + 4I

>> HermiteH[4.2, 2]
77.5290837369752225

JacobiP

JacobiP[n, a, b, x]
returns the Jacobi polynomial
P_n∧(a,b)(x).

154

>> JacobiP[1, a, b, z]

a
2
− b

2
+ z
(

1 +
a
2

+
b
2

)
>> JacobiP[3.5 + I, 3, 2, 4 - I]

1 410.02011674512937 +
5 797.29855312717469I

KelvinBei

KelvinBei[z]
returns the Kelvin function bei(z).

KelvinBei[n, z]
returns the Kelvin function bei_n(z).

>> KelvinBei[0.5]
0.0624932183821994586

>> KelvinBei[1.5 + I]
0.326323348699806294

+ 0.75560557861089228I

>> KelvinBei[0.5, 0.25]
0.370152900194021013

>> Plot[KelvinBei[x], {x, 0,
10}]

2. 4. 6. 8. 10.

−30.
−20.
−10.

10.

KelvinBer

KelvinBer[z]
returns the Kelvin function ber(z).

KelvinBer[n, z]
returns the Kelvin function ber_n(z).

>> KelvinBer[0.5]
0.999023463990838256

>> KelvinBer[1.5 + I]
1.11620420872233787−

0.117944469093970067I

>> KelvinBer[0.5, 0.25]
0.148824330530639942

>> Plot[KelvinBer[x], {x, 0,
10}]

2. 4. 6. 8. 10.

20.

40.

60.

80.

KelvinKei

KelvinKei[z]
returns the Kelvin function kei(z).

KelvinKei[n, z]
returns the Kelvin function kei_n(z).

>> KelvinKei[0.5]
−0.671581695094367603

>> KelvinKei[1.5 + I]
−0.248993863536003923

+ 0.303326291875385478I

>> KelvinKei[0.5, 0.25]
−2.05169683896315934

>> Plot[KelvinKei[x], {x, 0,
10}]

2. 4. 6. 8. 10.

−0.5

−0.4

−0.3

−0.2

−0.1

155

KelvinKer

KelvinKer[z]
returns the Kelvin function ker(z).

KelvinKer[n, z]
returns the Kelvin function ker_n(z).

>> KelvinKer[0.5]
0.855905872118634214

>> KelvinKer[1.5 + I]
−0.167162242027385125
− 0.184403720314419905I

>> KelvinKer[0.5, 0.25]
0.450022838747182502

>> Plot[KelvinKer[x], {x, 0,
10}]

2. 4. 6. 8. 10.−0.1

0.1
0.2
0.3
0.4
0.5

LaguerreL

LaguerreL[n, x]
returns the Laguerre polynomial
L_n(x).

LaguerreL[n, a, x]
returns the generalised Laguerre
polynomial L∧a_n(x).

>> LaguerreL[8, x]

1− 8x + 14x2 − 28x3

3
+

35x4

12

− 7x5

15
+

7x6

180
− x7

630
+

x8

40 320

>> LaguerreL[3/2, 1.7]

−0.94713399725341823

>> LaguerreL[5, 2, x]

21− 35x +
35x2

2
− 7x3

2
+

7x4

24
− x5

120

LegendreP

LegendreP[n, x]
returns the Legendre polynomial
P_n(x).

LegendreP[n, m, x]
returns the associated Legendre poly-
nomial P∧m_n(x).

>> LegendreP[4, x]

3
8
− 15x2

4
+

35x4

8

>> LegendreP[5/2, 1.5]

4.17761913892745532

>> LegendreP[1.75, 1.4, 0.53]

−1.32619280980662145

>> LegendreP[1.6, 3.1, 1.5]

−0.303998161489593441
− 1.91936885256334894I

LegendreP can be used to draw generalized
Lissajous figures:
>> ParametricPlot[{LegendreP[7,

x], LegendreP[5, x]}, {x,
-1, 1}]

−0.4 −0.2 0.2 0.4

−0.6

−0.4

−0.2

0.2

0.4

0.6

156

LegendreQ

LegendreQ[n, x]
returns the Legendre function of the
second kind Q_n(x).

LegendreQ[n, m, x]
returns the associated Legendre func-
tion of the second Q∧m_n(x).

>> LegendreQ[5/2, 1.5]

0.0362109671796812979
− 6.56218879817530572I

>> LegendreQ[1.75, 1.4, 0.53]

2.05498907857609114

>> LegendreQ[1.6, 3.1, 1.5]

−1.71931290970694153
− 7.70273279782676974I

ProductLog

ProductLog[z]
returns the value of the Lambert W
function at z.

The defining equation:
>> z == ProductLog[z] * E ^

ProductLog[z]

True

Some special values:
>> ProductLog[0]

0

>> ProductLog[E]

1

The graph of ProductLog:

>> Plot[ProductLog[x], {x, -1/E,
E}]

0.5 1. 1.5 2. 2.5−0.2

0.2
0.4
0.6
0.8
1.

SphericalHarmonicY

SphericalHarmonicY[l, m, theta, phi]
returns the spherical harmonic
functin Y_l∧m(theta, phi).

>> SphericalHarmonicY[3/4, 0.5,
Pi/5, Pi/3]

0.254247340352667373 +
0.146789770393358909I

>> SphericalHarmonicY[3, 1,
theta, phi]
√

21
(

1− 5Cos [theta]2
)

EIphiSin [theta]

8
√

Pi

StruveH

StruveH[n, z]
returns the Struve function H_n(z).

>> StruveH[1.5, 3.5]
1.13192125271801312

157

>> Plot[StruveH[0, x], {x, 0,
20}]

5. 10. 15. 20.−0.2

0.2

0.4

0.6

StruveL

StruveL[n, z]
returns the modified Struve function
L_n(z).

>> StruveL[1.5, 3.5]
4.41126360920433996

>> Plot[StruveL[0, x], {x, 0,
5}]

1. 2. 3. 4. 5.

5.

10.

15.

20.

WeberE

WeberE[n, z]
returns the Weber function E_n(z).

>> WeberE[1.5, 3.5]
−0.397256259210030809

>> Plot[WeberE[1, x], {x, -10,
10}]

−10. −5. 5. 10.

−0.4

−0.2

0.2

0.4

0.6

Zeta

Zeta[z]
returns the Riemann zeta function of
z.

>> Zeta[2]

Pi2

6

>> Zeta[-2.5 + I]
0.0235936105863796486 +

0.00140779960583837704I

158

XXX. Scoping

Contents

Block 159
Context 159

Module 160 $ModuleNumber . . 160

Block

Block[{vars}, expr]
temporarily stores the definitions of
certain variables, evaluates expr with
reset values and restores the original
definitions afterwards.

Block[{x=x0, y=y0, ...}, expr]
assigns initial values to the reset vari-
ables.

>> n = 10
10

>> Block[{n = 5}, n ^ 2]
25

>> n
10

Values assigned to block variables are eval-
uated at the beginning of the block. Keep
in mind that the result of Block is evaluated
again, so a returned block variable will get
its original value.
>> Block[{x = n+2, n}, {x, n}]

{12, 10}

If the variable specification is not of the de-
scribed form, an error message is raised:

>> Block[{x + y}, x]

Local variable specification
contains x + y, which
is not a symbol or an
assignment to a symbol.

x

Variable names may not appear more than
once:
>> Block[{x, x}, x]

Duplicate local variable
x found in local
variable specification.

x

Context

Context[symbol]
yields the name of the context where
symbol is defined in.

Contexts are not really implemented in
Mathics. Context just returns "System‘" for
built-in symbols and "Global‘" for user-
defined symbols.
>> Context[a]

Global‘

>> Context[Sin] // InputForm

"System‘"

159

Module

Module[{vars}, expr]
localizes variables by giving them
a temporary name of the form
name$number, where number is the
current value of $ModuleNumber.
Each time a module is evaluated,
$ModuleNumber is incremented.

>> x = 10;

>> Module[{x=x}, x=x+1; x]
11

>> x
10

>> t === Module[{t}, t]
False

Initial values are evaluated immediately:
>> Module[{t=x}, x = x + 1; t]

10

>> x
11

Variables inside other scoping constructs are
not affected by the renaming of Module:
>> Module[{a}, Block[{a}, a]]

a

>> Module[{a}, Block[{}, a]]
a$5

$ModuleNumber

$ModuleNumber
is the current “serial number” to be
used for local module variables.

>> Unprotect[$ModuleNumber]

>> $ModuleNumber = 20;

>> Module[{x}, x]
x$20

>> $ModuleNumber = x;
Cannot set $ModuleNumber

to x; value must be
a positive integer.

160

XXXI. String functions

Contents

CharacterRange . . . 161
Characters 161
FromCharacterCode 161
StringJoin (<>) 162

StringLength 162
StringQ 162
StringReplace 162
StringSplit 163

String 163
ToCharacterCode . . 163
ToExpression 163
ToString 164

CharacterRange

>> CharacterRange["a", "e"]

{a, b, c, d, e}

>> CharacterRange["b", "a"]

{}

Characters

>> Characters["abc"]
{a, b, c}

FromCharacterCode

FromCharacterCode[n]
returns the character corresponding
to character code n.

FromCharacterCode[{n1, n2, ...}]
returns a string with characters corre-
sponding to n_i.

FromCharacterCode[{{n11, n12, ...},
{n21, n22, ...}, ...}]

returns a list of strings.

>> FromCharacterCode[100]
d

>> FromCharacterCode[{100, 101,
102}]

def

>> ToCharacterCode[%]
{100, 101, 102}

>> FromCharacterCode[{{97, 98,
99}, {100, 101, 102}}]

{abc, def}

>> ToCharacterCode["abc 123"] //
FromCharacterCode

abc 123

StringJoin (<>)

>> StringJoin["a", "b", "c"]

abc

>> "a" <> "b" <> "c" //
InputForm

"abc"

StringJoin flattens lists out:
>> StringJoin[{"a", "b"}] //

InputForm

"ab"

161

>> Print[StringJoin[{"Hello", "
", {"world"}}, "!"]]

Hello world!

StringLength

StringLength gives the length of a string.
>> StringLength["abc"]

3

StringLength is listable:
>> StringLength[{"a", "bc"}]

{1, 2}

>> StringLength[x]

String expected.

StringLength [x]

StringQ

StringQ[expr]
returns True if expr is a String or
False otherwise.

>> StringQ["abc"]

True

>> StringQ[1.5]

False

>> Select[{"12", 1, 3, 5, "yz",
x, y}, StringQ]

{12, yz}

StringReplace

StringReplace["string", s->sp] or
StringReplace["string", {s1->sp1,
s2->sp2}]

replace the string si by spi for all oc-
curances in "string".

StringReplace["string", srules, n]
only perform the first n replacements.

StringReplace[{"string1‘‘,”string2",
...}, srules]

perform replacements on a list of
strings

StringReplace replaces all occurances of one
substring with another:
>> StringReplace["

xyxyxyyyxxxyyxy", "xy" -> "A
"]

AAAyyxxAyA

Multiple replacements can be supplied:
>> StringReplace["

xyzwxyzwxxyzxyzw", {"xyz" ->
"A", "w" -> "BCD"}]

ABCDABCDxAABCD

Only replace the first 2 occurances:
>> StringReplace["

xyxyxyyyxxxyyxy", "xy" -> "A
", 2]

AAxyyyxxxyyxy

StringReplace acts on lists of strings too:
>> StringReplace[{"xyxyxxy", "

yxyxyxxxyyxy"}, "xy" -> "A"]

{AAxA, yAAxxAyA}

StringSplit

>> StringSplit["abc,123", ","]

{abc, 123}

>> StringSplit["abc 123"]

{abc, 123}

162

>> StringSplit["abc,123.456",
{",", "."}]

{abc, 123, 456}

String

String is the head of strings.
>> Head["abc"]

String

>> "abc"
abc

Use InputForm to display quotes around
strings:
>> InputForm["abc"]

"abc"

FullForm also displays quotes:
>> FullForm["abc" + 2]

Plus [2, "abc"]

ToCharacterCode

ToCharacterCode[‘‘string’]’
converts the string to a list of integer
character codes.

ToCharacterCode[{‘‘string1’,
“string2”, ...}]’

converts a list of strings to character
codes.

>> ToCharacterCode["abc"]
{97, 98, 99}

>> FromCharacterCode[%]
abc

>> ToCharacterCode["\[Alpha]\[
Beta]\[Gamma]"]

{945, 946, 947}

>> ToCharacterCode[{"ab", "c"}]

{{97, 98} , {99}}

>> ToCharacterCode[{"ab", x}]
String or list of strings

expected at position 1 in
ToCharacterCode

[
{ab, x}

]
.

ToCharacterCode
[
{ab, x}

]
>> ListPlot[ToCharacterCode["

plot this string"], Filling
-> Axis]

5. 10. 15.

106.
108.
110.
112.
114.
116.

ToExpression

ToExpression[input]
inteprets a given string as Mathics in-
put.

ToExpression[input, form]
reads the given input in the specified
form.

ToExpression[input, form, h]
applies the head h to the expression
before evaluating it.

>> ToExpression["1 + 2"]
3

>> ToExpression["{2, 3, 1}",
InputForm, Max]

3

ToString

>> ToString[2]

2

>> ToString[2] // InputForm

"2"

163

>> ToString[a+b]

a + b

>> "U" <> 2
String expected.

U<>2

>> "U" <> ToString[2]

U2

164

XXXII. Structure

Contents

Apply (@@) 165
ApplyLevel (@@@) . . 165
AtomQ 166
Depth 166
Flatten 166
FreeQ 166

Head 167
Map (/@) 167
MapIndexed 167
Null 168
Operate 168
OrderedQ 168
PatternsOrderedQ . 168

Sort 168
SymbolName 169
SymbolQ 169
Symbol 169
Thread 169
Through 169

Apply (@@)

Apply[f, expr] or f @@ expr
replaces the head of expr with f.

Apply[f, expr, levelspec]
applies f on the parts specified by lev-
elspec.

>> f @@ {1, 2, 3}
f [1, 2, 3]

>> Plus @@ {1, 2, 3}
6

The head of expr need not be List:
>> f @@ (a + b + c)

f [a, b, c]

Apply on level 1:
>> Apply[f, {a + b, g[c, d, e *

f], 3}, {1}]{
f [a, b] , f

[
c, d, e f

]
, 3
}

The default level is 0:
>> Apply[f, {a, b, c}, {0}]

f [a, b, c]

Range of levels, including negative level

(counting from bottom):
>> Apply[f, {{{{{a}}}}}, {2,

-3}]{{
f
[

f
[
{a}
]]}}

Convert all operations to lists:
>> Apply[List, a + b * c ^ e * f

[g], {0, Infinity}]

{a, {b, {c, e} , {g}}}

ApplyLevel (@@@)

ApplyLevel[f, expr] or f @@@ expr
is equivalent to Apply[f,
expr, {1}].

>> f @@@ {{a, b}, {c, d}}

{ f [a, b] , f [c, d]}

AtomQ

>> AtomQ[x]
True

165

>> AtomQ[1.2]
True

>> AtomQ[2 + I]
True

>> AtomQ[2 / 3]
True

>> AtomQ[x + y]

False

Depth

Depth[expr]
gives the depth of expr

The depth of an expression is defined as one
plus the maximum number of Part indices
required to reach any part of expr, except for
heads.
>> Depth[x]

1

>> Depth[x + y]
2

>> Depth[{{{{x}}}}]
5

Complex numbers are atomic, and hence
have depth 1:
>> Depth[1 + 2 I]

1

Depth ignores heads:
>> Depth[f[a, b][c]]

2

Flatten

Flatten[expr]
flattens out nested lists in expr.

Flatten[expr, n]
stops flattening at level n.

Flatten[expr, n, h]
flattens expressions with head h in-
stead of List.

>> Flatten[{{a, b}, {c, {d}, e},
{f, {g, h}}}]

{a, b, c, d, e, f , g, h}

>> Flatten[{{a, b}, {c, {e}, e},
{f, {g, h}}}, 1]

{a, b, c, {e} , e, f , {g, h}}

>> Flatten[f[a, f[b, f[c, d]], e
], Infinity, f]

f [a, b, c, d, e]

FreeQ

>> FreeQ[y, x]

True

>> FreeQ[a+b+c, a+b]
False

>> FreeQ[{1, 2, a^(a+b)}, Plus]
False

>> FreeQ[a+b, x_+y_+z_]

True

>> FreeQ[a+b+c, x_+y_+z_]

False

Head

>> Head[a * b]
Times

>> Head[6]
Integer

166

>> Head[x]
Symbol

Map (/@)

Map[f, expr] or f /@ expr
applies f to each part on the first level
of expr.

Map[f, expr, levelspec]
applies f to each level specified by
levelspec of expr.

>> f /@ {1, 2, 3}

{ f [1] , f [2] , f [3]}

>> #^2& /@ {1, 2, 3, 4}

{1, 4, 9, 16}

Map f on the second level:
>> Map[f, {{a, b}, {c, d, e}},

{2}]

{{ f [a] , f [b]} , { f [c] , f [d] , f [e]}}

Include heads:
>> Map[f, a + b + c, Heads->True

]

f [Plus]
[

f [a] , f [b] , f [c]
]

MapIndexed

MapIndexed[f, expr]
applies f to each part on the first level
of expr, including the part positions
in the call to f.

MapIndexed[f, expr, levelspec]
applies f to each level specified by
levelspec of expr.

>> MapIndexed[f, {a, b, c}]{
f
[
a, {1}

]
, f
[
b, {2}

]
, f
[
c, {3}

]}
Include heads (index 0):

>> MapIndexed[f, {a, b, c},
Heads->True]

f
[
List, {0}

] [
f
[
a, {1}

]
,

f
[
b, {2}

]
, f
[
c, {3}

]]
Map on levels 0 through 1 (outer expression
gets index {}):
>> MapIndexed[f, a + b + c * d,

{0, 1}]

f
[

f
[
a, {1}

]
+ f
[
b,

{2}
]

+ f
[
cd, {3}

]
, {}

]
Get the positions of atoms in an expression
(convert operations to List first to disable
Listable functions):
>> expr = a + b * c ^ e * f[g];

>> listified = Apply[List, expr,
{0, Infinity}];

>> MapIndexed[#2 &, listified,
{-1}]

{{1} , {{2, 1} , {{2, 2, 1} ,
{2, 2, 2}} , {{2, 3, 1}}}}

Replace the heads with their positions, too:
>> MapIndexed[#2 &, listified,

{-1}, Heads -> True]

{0}
[
{1} , {2, 0}

[
{2, 1} ,

{2, 2, 0}
[
{2, 2, 1} , {2, 2,

2}
]

, {2, 3, 0}
[
{2, 3, 1}

]]]
The positions are given in the same for-
mat as used by Extract. Thus, mapping
Extract on the indices given by MapIndexed
re-constructs the original expression:
>> MapIndexed[Extract[expr, #2]

&, listified, {-1}, Heads ->
True]

a + bce f
[
g
]

Null

Null is the implicit result of expressions that

167

do not yield a result:
>> FullForm[a:=b]

Null

It is not displayed in StandardForm,
>> a:=b

in contrast to the empty string:
>> ""

(watch the empty line).

Operate

Operate[p, expr]
applies p to the head of expr.

Operate[p, expr, n]
applies p to the nth head of expr.

>> Operate[p, f[a, b]]

p
[

f
]

[a, b]

The default value of n is 1:
>> Operate[p, f[a, b], 1]

p
[

f
]

[a, b]

With n=0, Operate acts like Apply:
>> Operate[p, f[a][b][c], 0]

p
[

f [a] [b] [c]
]

OrderedQ

>> OrderedQ[a, b]
True

>> OrderedQ[b, a]
False

PatternsOrderedQ

>> PatternsOrderedQ[x__, x_]
False

>> PatternsOrderedQ[x_, x__]
True

>> PatternsOrderedQ[b, a]
True

Sort

Sort[list]
sorts list (or the leaves of any other
expression) according to canonical
ordering.

Sort[list, p]
sorts using p to determine the order
of two elements.

>> Sort[{4, 1.0, a, 3+I}]

{1., 3 + I, 4, a}

Sort uses OrderedQ to determine order-
ing by default. You can sort pat-
terns according to their precedence using
PatternsOrderedQ:
>> Sort[{items___, item_,

OptionsPattern[], item_symbol
, item_?test},
PatternsOrderedQ]

{item_symbol, item_? test,
item_, items___,
OptionsPattern []}

When sorting patterns, values of atoms do
not matter:
>> Sort[{a, b/;t},

PatternsOrderedQ]

{b/;t, a}

>> Sort[{2+c_, 1+b__},
PatternsOrderedQ]

{2 + c_, 1 + b__}

>> Sort[{x_ + n_*y_, x_ + y_},
PatternsOrderedQ]

{x_ + n_y_, x_ + y_}

168

SymbolName

>> SymbolName[x] // InputForm

"x"

SymbolQ

>> SymbolQ[a]

True

>> SymbolQ[1]

False

>> SymbolQ[a + b]

False

Symbol

Symbol is the head of symbols.
>> Head[x]

Symbol

You can use Symbol to create symbols from
strings:
>> Symbol["x"] + Symbol["x"]

2x

Thread

Thread[f[args]]
threads f over any lists that appear in
args.

Thread[f[args], h]
threads over any parts with head h.

>> Thread[f[{a, b, c}]]

{ f [a] , f [b] , f [c]}

>> Thread[f[{a, b, c}, t]]

{ f [a, t] , f [b, t] , f [c, t]}

>> Thread[f[a + b + c], Plus]
f [a] + f [b] + f [c]

Functions with attribute Listable are auto-
matically threaded over lists:
>> {a, b, c} + {d, e, f} + g

{a + d + g, b + e + g, c + f + g}

Through

Through[p[f][x]]
gives p[f [x]].

>> Through[f[g][x]]

f
[
g [x]

]
>> Through[p[f, g][x]]

p
[

f [x] , g [x]
]

169

XXXIII. System functions

Contents

Names 170 $Version 170

Names

Names["pattern"]
returns the list of names matching
pattern.

>> Names["List"]
{List}

>> Names["List*"]
{List, ListLinePlot,

ListPlot, ListQ, Listable}

>> Names["List@"]
{Listable}

>> x = 5;

>> Names["Global‘*"]
{x}

The number of built-in symbols:
>> Length[Names["System‘*"]]

538

$Version

$Version
returns a string with the current
Mathics version and the versions of
relevant libraries.

>> $Version
Mathics 0.6.0rc1 on PyPy 2.7.3

(2.1.0+dfsg-3, Sep 12 2 013,
13:13:48) using Django 1.5.5,
SymPy 0.7.3, mpmath 0.17

170

XXXIV. Tensor functions

Contents

ArrayDepth 171
ArrayQ 171
DiagonalMatrix . . . 171
Dimensions 172

Dot (.) 172
IdentityMatrix 172
Inner 172
MatrixQ 172

Outer 173
Transpose 173
VectorQ 173

ArrayDepth

>> ArrayDepth[{{a,b},{c,d}}]
2

>> ArrayDepth[x]
0

ArrayQ

ArrayQ[expr]
tests whether expr is a full array.

ArrayQ[expr, pattern]
also tests whether the array depth of
expr matches pattern.

ArrayQ[expr, pattern, test]
furthermore tests whether test
yields True for all elements of
expr. ArrayQ[expr] is equivalent to
ArrayQ[expr, _, True&].

>> ArrayQ[a]

False

>> ArrayQ[{a}]

True

>> ArrayQ[{{{a}},{{b,c}}}]

False

>> ArrayQ[{{a, b}, {c, d}}, 2,
SymbolQ]

True

DiagonalMatrix

DiagonalMatrix[list]
gives a matrix with the values in list
on its diagonal and zeroes elsewhere.

>> DiagonalMatrix[{1, 2, 3}]

{{1, 0, 0} , {0, 2, 0} , {0, 0, 3}}

>> MatrixForm[%] 1 0 0
0 2 0
0 0 3



Dimensions

>> Dimensions[{a, b, c}]

{3}

>> Dimensions[{{a, b}, {c, d}, {
e, f}}]

{3, 2}

Ragged arrays are not taken into account:

171

>> Dimensions[{{a, b}, {b, c}, {
c, d, e}}]

{3}

The expression can have any head:
>> Dimensions[f[f[a, b, c]]]

{1, 3}

Dot (.)

Scalar product of vectors:
>> {a, b, c} . {x, y, z}

ax + by + cz

Product of matrices and vectors:
>> {{a, b}, {c, d}} . {x, y}

{ax + by, cx + dy}

Matrix product:
>> {{a, b}, {c, d}} . {{r, s}, {

t, u}}

{{ar + bt, as + bu} , {cr + dt, cs + du}}

IdentityMatrix

IdentityMatrix[n]
gives the identity matrix with n rows
and columns.

>> IdentityMatrix[3]

{{1, 0, 0} , {0, 1, 0} , {0, 0, 1}}

Inner

>> Inner[f, {a, b}, {x, y}, g]

g
[

f [a, x] , f
[
b, y
]]

The inner product of two boolean matrices:
>> Inner[And, {{False, False}, {

False, True}}, {{True, False
}, {True, True}}, Or]

{{False, False} , {True, True}}

Inner works with tensors of any depth:
>> Inner[f, {{{a, b}}, {{c, d

}}}, {{1}, {2}}, g]{{{
g
[

f [a, 1] , f [b, 2]
]}}

,{{
g
[

f [c, 1] , f [d, 2]
]}}}

MatrixQ

>> MatrixQ[{{1, 3}, {4.0, 3/2}},
NumberQ]

True

Outer

>> Outer[f, {a, b}, {1, 2, 3}]

{{ f [a, 1] , f [a, 2] , f [a, 3]} ,
{ f [b, 1] , f [b, 2] , f [b, 3]}}

Outer product of two matrices:
>> Outer[Times, {{a, b}, {c, d

}}, {{1, 2}, {3, 4}}]

{{{{a, 2a} , {3a, 4a}} , {{b,
2b} , {3b, 4b}}} , {{{c, 2c} , {3c,
4c}} , {{d, 2d} , {3d, 4d}}}}

Outer of multiple lists:
>> Outer[f, {a, b}, {x, y, z},

{1, 2}]{{
{ f [a, x, 1] , f [a, x, 2]} ,

{
f
[

a, y, 1
]

, f
[
a, y, 2

]}
, { f [a, z,

1] , f [a, z, 2]}
}

,
{
{ f [b, x, 1] ,

f [b, x, 2]} ,
{

f
[
b, y, 1

]
, f
[
b, y,

2
]}

, { f [b, z, 1] , f [b, z, 2]}
}}

Arrays can be ragged:
>> Outer[Times, {{1, 2}}, {{a, b

}, {c, d, e}}]

{{{{a, b} , {c, d, e}} ,
{{2a, 2b} , {2c, 2d, 2e}}}}

Word combinations:

172

>> Outer[StringJoin, {"", "re",
"un"}, {"cover", "draw", "
wind"}, {"", "ing", "s"}] //
InputForm

{{{"cover", "covering",
"covers"} , {"draw",
"drawing", "draws"} , {"wind",
"winding", "winds"}} ,
{{"recover", "recovering",
"recovers"} , {"redraw",
"redrawing", "redraws"} ,
{"rewind", "rewinding",
"rewinds"}} , {{"uncover",
"uncovering", "uncovers"} ,
{"undraw", "undrawing",
"undraws"} , {"unwind",
"unwinding", "unwinds"}}}

Compositions of trigonometric functions:
>> trigs = Outer[Composition, {

Sin, Cos, Tan}, {ArcSin,
ArcCos, ArcTan}]

{{Composition [Sin, ArcSin] ,
Composition [Sin, ArcCos] ,
Composition [Sin, ArcTan]} ,
{Composition [Cos, ArcSin] ,
Composition [Cos, ArcCos] ,
Composition [Cos, ArcTan]} ,
{Composition [Tan, ArcSin] ,
Composition [Tan, ArcCos] ,
Composition [Tan, ArcTan]}}

Evaluate at 0:
>> Map[#[0] &, trigs, {2}]

{{0, 1, 0} , {1, 0, 1} , {0,
ComplexInfinity, 0}}

Transpose

Tranpose[m]
transposes rows and columns in the
matrix m.

>> Transpose[{{1, 2, 3}, {4, 5,
6}}]

{{1, 4} , {2, 5} , {3, 6}}

>> MatrixForm[%] 1 4
2 5
3 6



VectorQ

>> VectorQ[{a, b, c}]
True

173

XXXV. File Operations

Contents

AbsoluteFileName . 174
BinaryRead 175
BinaryWrite 176
Close 176
Compress 177
CopyDirectory . . . 177
CopyFile 177
CreateDirectory . . . 177
DeleteDirectory . . . 177
DeleteFile 177
Directory 177
DirectoryName . . . 178
DirectoryQ 178
DirectoryStack . . . 178
ExpandFileName . . 178
FileBaseName 178
FileByteCount 178
FileDate 179
FileExistsQ 179
FileExtension 179
FileHash 179

FileNameDepth . . . 179
FileNameJoin 180
FileNameSplit 180
FilePrint 180
FileType 180
Find 181
FindFile 181
FindList 181
Get (<<) 181
$HomeDirectory . . 181
$InitialDirectory . . 181
$Input 182
$InputFileName . . . 182
InputStream 182
$InstallationDirectory182
Needs 182
OpenAppend 182
OpenRead 182
OpenWrite 183
$OperatingSystem . 183
OutputStream 183
ParentDirectory . . . 183

$Path 183
$PathnameSeparator 183
Put (>>) 183
PutAppend (>>>) . . 184
Read 184
ReadList 185
RenameDirectory . . 185
RenameFile 185
ResetDirectory . . . 185
$RootDirectory . . . 185
SetDirectory 185
SetFileDate 186
SetStreamPosition . 186
Skip 186
StreamPosition . . . 187
Streams 187
StringToStream . . . 187
$TemporaryDirectory 187
Uncompress 187
Write 188
WriteString 188

AbsoluteFileName

AbsoluteFileName["name"]
returns the absolute version of the
given filename.

>> AbsoluteFileName["ExampleData
/sunflowers.jpg"]

/usr/local/lib/pypy2.7/dist-packages/Mathics-0.6.0rc1-py2.7.egg/mathics/data/ExampleData/sunflowers.jpg

174

BinaryRead

BinaryRead[stream]
reads one byte from the stream as an
integer from 0 to 255.

BinaryRead[stream, type]
reads one object of specified type
from the stream.

BinaryRead[stream, {type1, type2,
...}]

reads a sequence of objects of speci-
fied types.

>> strm = OpenWrite[BinaryFormat
-> True]

OutputStream
[

/tmp/tmpShR_f3, 292
]

>> BinaryWrite[strm, {97, 98,
99}]

OutputStream
[

/tmp/tmpShR_f3, 292
]

>> Close[strm]
/tmp/tmpShR_f3

>> strm = OpenRead[%,
BinaryFormat -> True]

InputStream
[

/tmp/tmpShR_f3, 293
]

>> BinaryRead[strm, {"Character8
", "Character8", "Character8
"}]

{a, b, c}

>> Close[strm];

BinaryWrite

BinaryWrite[channel, b]
writes a single byte given as an inte-
ger from 0 to 255.

BinaryWrite[channel, {b1, b2, ...}]
writes a sequence of byte.

BinaryWrite[channel, ‘‘string’]’
writes the raw characters in a string.

BinaryWrite[channel, x, type]
writes x as the specified type.

BinaryWrite[channel, {x1, x2, ...},
type]

writes a sequence of objects as the
specified type.

BinaryWrite[channel, {x1, x2, ...},
{type1, type2, ...}]

writes a sequence of objects using a
sequence of specified types.

>> strm = OpenWrite[BinaryFormat
-> True]

OutputStream
[

/tmp/tmpLQcntP, 690
]

>> BinaryWrite[strm, {39, 4,
122}]

OutputStream
[

/tmp/tmpLQcntP, 690
]

>> Close[strm]
/tmp/tmpLQcntP

>> strm = OpenRead[%,
BinaryFormat -> True]

InputStream
[

/tmp/tmpLQcntP, 691
]

>> BinaryRead[strm]
39

>> BinaryRead[strm, "Byte"]

4

175

>> BinaryRead[strm, "Character8
"]
z

>> Close[strm];

Write a String
>> strm = OpenWrite[BinaryFormat

-> True]

OutputStream
[

/tmp/tmp88DDuD, 692
]

>> BinaryWrite[strm, "abc123"]

OutputStream
[

/tmp/tmp88DDuD, 692
]

>> Close[%]
/tmp/tmp88DDuD

Read as Bytes
>> strm = OpenRead[%,

BinaryFormat -> True]

InputStream
[

/tmp/tmp88DDuD, 693
]

>> BinaryRead[strm, {"Character8
", "Character8", "Character8
", "Character8", "Character8
", "Character8", "Character8
"}]

{a, b, c, 1, 2, 3, EndOfFile}

>> Close[strm]
/tmp/tmp88DDuD

Read as Characters
>> strm = OpenRead[%,

BinaryFormat -> True]

InputStream
[

/tmp/tmp88DDuD, 694
]

>> BinaryRead[strm, {"Byte", "
Byte", "Byte", "Byte", "Byte
", "Byte", "Byte"}]

{97, 98, 99, 49, 50, 51, EndOfFile}

>> Close[strm]
/tmp/tmp88DDuD

Write Type
>> strm = OpenWrite[BinaryFormat

-> True]

OutputStream
[

/tmp/tmpUdpsoT, 695
]

>> BinaryWrite[strm, 97, "Byte"]

OutputStream
[

/tmp/tmpUdpsoT, 695
]

>> BinaryWrite[strm, {97, 98,
99}, {"Byte", "Byte", "Byte
"}]

OutputStream
[

/tmp/tmpUdpsoT, 695
]

>> Close[%]
/tmp/tmpUdpsoT

Close

Close[stream]
closes an input or output stream.

>> Close[StringToStream["123abc
"]]

String

>> Close[OpenWrite[]]

/tmp/tmpoW9SKV

Compress

Compress[expr]
gives a compressed string representa-
tion of expr.

>> Compress[N[Pi, 10]]

eJwz1jM0MTS1NDIzNQEADRsCNw==

176

CopyDirectory

CopyDirectory["dir1‘‘,”dir2"]
copies directory dir1 to dir2.

CopyFile

CopyFile["file1‘‘,”file2"]
copies file1 to file2.

>> CopyFile["ExampleData/
sunflowers.jpg", "
MathicsSunflowers.jpg"]

MathicsSunflowers.jpg

>> DeleteFile["MathicsSunflowers
.jpg"]

CreateDirectory

CreateDirectory["dir"]
creates a directory called dir.

CreateDirectory[]
creates a temporary directory.

>> dir = CreateDirectory[]

/tmp/mp4e8jK

DeleteDirectory

DeleteDirectory["dir"]
deletes a directory called dir.

>> dir = CreateDirectory[]

/tmp/mtgLTbB

>> DeleteDirectory[dir]

>> DirectoryQ[dir]

False

DeleteFile

Delete["file"]
deletes file.

Delete[{"file1‘‘,”file2", ...}]
deletes a list of files.

>> CopyFile["ExampleData/
sunflowers.jpg", "
MathicsSunflowers.jpg"];

>> DeleteFile["MathicsSunflowers
.jpg"]

>> CopyFile["ExampleData/
sunflowers.jpg", "
MathicsSunflowers1.jpg"];

>> CopyFile["ExampleData/
sunflowers.jpg", "
MathicsSunflowers2.jpg"];

>> DeleteFile[{"
MathicsSunflowers1.jpg", "
MathicsSunflowers2.jpg"}]

Directory

Directory[]
returns the current working direc-
tory.

>> Directory[]

/home/jan/Mathics/mathics

DirectoryName

DirectoryName["name"]
extracts the directory name from a
filename.

>> DirectoryName["a/b/c"]

a/b

177

>> DirectoryName["a/b/c", 2]
a

DirectoryQ

DirectoryQ["name"]
returns True if the directory called
name exists and False otherwise.

>> DirectoryQ["ExampleData/"]

True

>> DirectoryQ["ExampleData/
MythicalSubdir/"]

False

DirectoryStack

DirectoryStack[]
returns the directory stack.

>> DirectoryStack[]

{/home/jan/Mathics/mathics}

ExpandFileName

ExpandFileName["name"]
expands name to an absolute filename
for your system.

>> ExpandFileName["ExampleData/
sunflowers.jpg"]

/home/jan/Mathics/mathics/ExampleData/sunflowers.jpg

FileBaseName

FileBaseName["file"]
gives the base name for the specified
file name.

>> FileBaseName["file.txt"]
file

>> FileBaseName["file.tar.gz"]

file.tar

FileByteCount

FileByteCount[file]
returns the number of bytes in file.

>> FileByteCount["ExampleData/
sunflowers.jpg"]

142 286

FileDate

FileDate[file, types]
returns the time and date at which
the file was last modified.

>> FileDate["ExampleData/
sunflowers.jpg"]

{2 013, 10, 28, 3, 4, 25.}

>> FileDate["ExampleData/
sunflowers.jpg", "Access"]

{2 013, 10, 28, 3, 15, 34.}

>> FileDate["ExampleData/
sunflowers.jpg", "Creation"]

Missing
[
NotApplicable

]
>> FileDate["ExampleData/

sunflowers.jpg", "Change"]

{2 013, 10, 28, 3, 4, 25.}

>> FileDate["ExampleData/
sunflowers.jpg", "
Modification"]

{2 013, 10, 28, 3, 4, 25.}

178

>> FileDate["ExampleData/
sunflowers.jpg", "Rules"]{

Access-> {2 013, 10, 28, 3,
15, 34.} , Creation->Missing

[
NotApplicable

]
, Change-> {

2 013, 10, 28, 3, 4, 25.} ,
Modification-> {2 ˜
˜013, 10, 28, 3, 4, 25.}

}

FileExistsQ

FileExistsQ["file"]
returns True if file exists and False
otherwise.

>> FileExistsQ["ExampleData/
sunflowers.jpg"]

True

>> FileExistsQ["ExampleData/
sunflowers.png"]

False

FileExtension

FileExtension["file"]
gives the extension for the specified
file name.

>> FileExtension["file.txt"]
txt

>> FileExtension["file.tar.gz"]
gz

FileHash

FileHash[file]
returns an integer hash for the given
file.

FileHash[file, type]
returns an integer hash of the speci-
fied type for the given file.

<dd>The types supported are
“MD5”, “Adler32”, “CRC32”, “SHA”,
“SHA224”, “SHA256”, “SHA384”, and
“SHA512”.</dd>

>> FileHash["ExampleData/
sunflowers.jpg"]

109 937 059 621 979 839 ˜
˜952 736 809 235 486 742 106

>> FileHash["ExampleData/
sunflowers.jpg", "MD5"]

109 937 059 621 979 839 ˜
˜952 736 809 235 486 742 106

>> FileHash["ExampleData/
sunflowers.jpg", "Adler32"]

1 607 049 478

>> FileHash["ExampleData/
sunflowers.jpg", "SHA256"]

111 619 807 552 579 450 300 ˜
˜684 600 241 129 773 909 ˜
˜359 865 098 672 286 468 ˜
˜229 443 390 003 894 913 065

FileNameDepth

FileNameDepth["name"]
gives the number of path parts in the
given filename.

>> FileNameDepth["a/b/c"]
3

>> FileNameDepth["a/b/c/"]
3

179

FileNameJoin

FileNameJoin[{"dir_1‘‘,”dir_2",
...}]

joins the dir_i togeather into one path.

>> FileNameJoin[{"dir1", "dir2",
"dir3"}]

dir1/dir2/dir3

>> FileNameJoin[{"dir1", "dir2",
"dir3"}, OperatingSystem ->

"Unix"]

dir1/dir2/dir3

FileNameSplit

FileNameSplit["filenams"]
splits a filename into a list of parts.

>> FileNameSplit["example/path/
file.txt"]

{example, path, file.txt}

FilePrint

FilePrint[file]
prints the raw contents of file.

FileType

FileType["file"]
returns the type of a file, from File,
Directory or None.

>> FileType["ExampleData/
sunflowers.jpg"]

File

>> FileType["ExampleData"]

Directory

>> FileType["ExampleData/
nonexistant"]

None

Find

Find[stream, text]
find the first line in stream that con-
tains text.

>> str = OpenRead["ExampleData/
EinsteinSzilLetter.txt"];

>> Find[str, "uranium"]
in manuscript, leads me

to expect that the element
uranium may be turned into

>> Find[str, "uranium"]
become possible to set up

a nuclear chain reaction in
a large mass of uranium,

>> Close[str]
ExampleData/EinsteinSzilLetter.txt

>> str = OpenRead["ExampleData/
EinsteinSzilLetter.txt"];

>> Find[str, {"energy", "power"}
]

a new and important source
of energy in the immediate
future. Certain aspects

>> Find[str, {"energy", "power"}
]

by which vast amounts of
power and large quantities
of new radium-like

>> Close[str]
ExampleData/EinsteinSzilLetter.txt

180

FindFile

FindFile[name]
searches $Path for the given file-
name.

>> FindFile["ExampleData/
sunflowers.jpg"]

/usr/local/lib/pypy2.7/dist-packages/Mathics-0.6.0rc1-py2.7.egg/mathics/data/ExampleData/sunflowers.jpg

>> FindFile["VectorAnalysis‘"]

/usr/local/lib/pypy2.7/dist-packages/Mathics-0.6.0rc1-py2.7.egg/mathics/packages/VectorAnalysis/Kernel/init.m

>> FindFile["VectorAnalysis‘
VectorAnalysis‘"]

/usr/local/lib/pypy2.7/dist-packages/Mathics-0.6.0rc1-py2.7.egg/mathics/packages/VectorAnalysis/VectorAnalysis.m

FindList

FindList[file, text]
returns a list of all lines in file that
contain text.

FindList[file, {text1, text2, ...}]
returns a list of all lines in file that
contain any of the specified string.

FindList[{file1, file2, ...}, ...]
returns a list of all lines in any of the
filei that contain the specified strings.

>> str = FindList["ExampleData/
EinsteinSzilLetter.txt", "
uranium"];

>> FindList["ExampleData/
EinsteinSzilLetter.txt", "
uranium", 1]

{in manuscript, leads me
to expect that the element
uranium may be turned into}

Get (<<)

<<name
reads a file and evaluates each ex-
pression, returning only the last one.

>> Put[x + y, "example_file"]

>> <<"example_file"

>> Put[x + y, 2x^2 + 4z!, Cos[x]
+ I Sin[x], "example_file"]

>> <<"example_file"

>> 40! >> "fourtyfactorial"

>> FilePrint["fourtyfactorial"]

815 915 283 247 897 734 345 611 269 596 115 894 272 000 000 000

>> <<"fourtyfactorial"

815 915 283 247 897 734 345 611 ˜
˜269 596 115 894 272 000 000 000

$HomeDirectory

$HomeDirectory
returns the users HOME directory.

>> $HomeDirectory

/root

$InitialDirectory

$InitialDirectory
returns the directory from which
Mathics was started.

>> $InitialDirectory

/home/jan/Mathics/mathics

181

$Input

$Input
is the name of the stream from which
input is currently being read.

>> $Input

$InputFileName

$InputFileName
is the name of the file from which in-
put is currently being read.

While in interactive mode, $InputFileName
is “”.
>> $InputFileName

InputStream

InputStream[name, n]
represents an input stream.

>> str = StringToStream["Mathics
is cool!"]

InputStream
[
String, 896

]
>> Close[str]

String

$InstallationDirectory

$InstallationDirectory
returns the directory in which Math-
ics was installed.

>> $InstallationDirectory

/usr/local/lib/pypy2.7/dist-packages/Mathics-0.6.0rc1-py2.7.egg/mathics/

Needs

Needs["context‘"] <dd>loads the speci-
fied context if not already in $Packages.

>> Needs["VectorAnalysis‘"]

OpenAppend

OpenAppend[‘‘file’]’
opens a file and returns an Out-
putStream to which writes are ap-
pended.

>> OpenAppend[]

OutputStream
[

/tmp/tmpfnHIHg, 919
]

OpenRead

OpenRead[‘‘file’]’
opens a file and returns an Input-
Stream.

>> OpenRead["ExampleData/
EinsteinSzilLetter.txt"]

InputStream
[

ExampleData/EinsteinSzilLetter.txt,
925
]

OpenWrite

OpenWrite[‘‘file’]’
opens a file and returns an Output-
Stream.

>> OpenWrite[]

OutputStream
[

/tmp/tmpzera2G, 931
]

182

$OperatingSystem

$OperatingSystem
gives the type of operating system
running Mathics.

>> $OperatingSystem

Unix

OutputStream

OutputStream[name, n]
represents an output stream.

>> OpenWrite[]

OutputStream
[

/tmp/tmpyZYsSF, 935
]

>> Close[%]
/tmp/tmpyZYsSF

ParentDirectory

ParentDirectory[]
returns the parent of the current
working directory.

ParentDirectory["dir"]
returns the parent dir.

>> ParentDirectory[]

/home/jan/Mathics

$Path

$Path
returns the list of directories to search
when looking for a file.

>> $Path
{/root,
/usr/local/lib/pypy2.7/dist-packages/Mathics-0.6.0rc1-py2.7.egg/mathics/data,
/usr/local/lib/pypy2.7/dist-packages/Mathics-0.6.0rc1-py2.7.egg/mathics/packages}

$PathnameSeparator

$PathnameSeparator
returns a string for the seperator in
paths.

>> $PathnameSeparator

/

Put (>>)

expr >> filename
write expr to a file.

Put[expr1, expr2, ..., $‘‘filename
’$]’

write a sequence of expressions to a
file.

>> 40! >> "fourtyfactorial"

>> FilePrint["fourtyfactorial"]

815 915 283 247 897 734 345 611 269 596 115 894 272 000 000 000

>> Put[50!, "fiftyfactorial"]

>> FilePrint["fiftyfactorial"]

30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000

>> Put[10!, 20!, 30!, "
factorials"]

>> FilePrint["factorials"]
3 628 800
2 432 902 008 176 640 000
265 252 859 812 191 058 636 308 480 000 000

=

183

PutAppend (>>>)

expr >>> filename
append expr to a file.

PutAppend[expr1, expr2, ..., $‘‘
filename’$]’

write a sequence of expressions to a
file.

>> Put[50!, "factorials"]

>> FilePrint["factorials"]
30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000

>> PutAppend[10!, 20!, 30!, "
factorials"]

>> FilePrint["factorials"]
30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000
3 628 800
2 432 902 008 176 640 000
265 252 859 812 191 058 636 308 480 000 000

>> 60! >>> "factorials"

>> FilePrint["factorials"]
30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000
3 628 800
2 432 902 008 176 640 000
265 252 859 812 191 058 636 308 480 000 000
8 320 987 112 741 390 144 276 341 183 223 364 380 754 172 606 361 245 952 449 277 696 409 600 000 000 000 000

>> "string" >>> factorials

>> FilePrint["factorials"]
30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000
3 628 800
2 432 902 008 176 640 000
265 252 859 812 191 058 636 308 480 000 000
8 320 987 112 741 390 144 276 341 183 223 364 380 754 172 606 361 245 952 449 277 696 409 600 000 000 000 000
"string"

Read

Read[stream]
reads the input stream and returns
one expression.

Read[stream, type]
reads the input stream and returns an
object of the given type.

>> str = StringToStream["abc123
"];

>> Read[str, String]

abc123

>> str = StringToStream["abc
123"];

>> Read[str, Word]
abc

>> Read[str, Word]
123

>> str = StringToStream["123,
4"];

>> Read[str, Number]
123

>> Read[str, Number]
4

>> str = StringToStream["123 abc
"];

>> Read[str, {Number, Word}]

{123, abc}

184

ReadList

ReadList["file"]
Reads all the expressions until the
end of file.

ReadList["file", type]
Reads objects of a specified type until
the end of file.

ReadList["file", {type1, type2, ...}]
Reads a sequence of specified types
until the end of file.

>> ReadList[StringToStream["a 1
b 2"], {Word, Number}]

{{a, 1} , {b, 2}}

>> str = StringToStream["abc123
"];

>> ReadList[str]
{abc123}

>> InputForm[%]

{"abc123"}

RenameDirectory

RenameyDirectory["dir1‘‘,”dir2"]
renames directory dir1 to dir2.

RenameFile

RenameFile["file1‘‘,”file2"]
renames file1 to file2.

>> CopyFile["ExampleData/
sunflowers.jpg", "
MathicsSunflowers.jpg"]

MathicsSunflowers.jpg

>> RenameFile["MathicsSunflowers
.jpg", "MathicsSunnyFlowers.
jpg"]

MathicsSunnyFlowers.jpg

>> DeleteFile["
MathicsSunnyFlowers.jpg"]

ResetDirectory

ResetDirectory[]
pops a directory from the directory
stack and returns it.

>> ResetDirectory[]

Directory stack is empty.

/home/jan/Mathics/mathics

$RootDirectory

$RootDirectory
returns the system root directory.

>> $RootDirectory

/

SetDirectory

SetDirectory[dir]
sets the current working directory to
dir.

>> SetDirectory[]

/root

185

SetFileDate

SetFileDate["file"]
set the file access and modification
dates of file to the current date.

SetFileDate["file", date]
set the file access and modification
dates of file to the specified date list.

SetFileDate["file", date, "type"]
set the file date of file to the spec-
ified date list. The "type“ can be
one of ”Access“, ”Creation“, ”Modifica-
tion", or All.

Create a temporary file (for example pur-
poses)
>> tmpfilename =

$TemporaryDirectory <> "/tmp0
";

>> Close[OpenWrite[tmpfilename
]];

>> SetFileDate[tmpfilename,
{2000, 1, 1, 0, 0, 0.}, "
Access"];

>> FileDate[tmpfilename, "Access
"]

{2 000, 1, 1, 0, 0, 0.}

SetStreamPosition

SetStreamPosition[stream, n]
sets the current position in a stream.

>> str = StringToStream["Mathics
is cool!"]

InputStream
[
String, 1 046

]
>> SetStreamPosition[str, 8]

8

>> Read[str, Word]
is

>> SetStreamPosition[str,
Infinity]

16

Skip

Skip[stream, type]
skips ahead in an input steream by
one object of the specified type.

Skip[stream, type, n]
skips ahead in an input steream by n
objects of the specified type.

>> str = StringToStream["a b c d
"];

>> Read[str, Word]
a

>> Skip[str, Word]

>> Read[str, Word]
c

>> str = StringToStream["a b c d
"];

>> Read[str, Word]
a

>> Skip[str, Word, 2]

>> Read[str, Word]
d

StreamPosition

StreamPosition[stream]
returns the current position in a
stream as an integer.

>> str = StringToStream["Mathics
is cool!"]

InputStream
[
String, 1 055

]

186

>> Read[str, Word]
Mathics

>> StreamPosition[str]
7

Streams

Streams[]
returns a list of all open streams.

>> Streams[]{
OutputStream

[
MathicsNonExampleFile,
916
]

, OutputStream
[

MathicsNonExampleFile,
918
]

, OutputStream
[

MathicsNonExampleFile,
920
]

, InputStream
[
String,

994
]

, InputStream
[
String,

1 008
]

, InputStream
[
String,

1 022
]

, InputStream
[
String,

1 032
]

, InputStream
[
String,

1 034
]

, InputStream
[
String,

1 035
]

, InputStream
[
String,

1 037
]

, InputStream
[
String,

1 038
]

, InputStream
[
String,

1 040
]

, InputStream
[
String,

1 044
]

, InputStream
[
String,

1 045
]

, InputStream
[
String,

1 046
]

, InputStream
[
String,

1 053
]

, InputStream
[
String,

1 054
]

, InputStream
[
String,

1 055
]

, OutputStream
[

/tmp/tmplKwVLU, 1 ˜
˜056

]
, OutputStream

[
/tmp/tmpV2jmAd, 1 057

]}

StringToStream

StringToStream[string]
converts a string to an open input
stream.

>> strm = StringToStream["abc
123"]

InputStream
[
String, 1 061

]

$TemporaryDirectory

$TemporaryDirectory
returns the directory used for tempo-
rary files.

>> $TemporaryDirectory

/tmp

Uncompress

Uncompress["string"]
recovers an expression from a string
generated by Compress.

>> Compress["Mathics is cool"]

eJxT8k0sychMLlbILFZIzs/PUQIANFwF1w==

>> Uncompress[%]

Mathics is cool

>> a = x ^ 2 + y Sin[x] + 10 Log
[15];

>> b = Compress[a];

>> Uncompress[b]

x2 + ySin [x] + 10Log [15]

187

Write

Write[channel, expr1, expr2, ...]
writes the expressions to the output
channel followed by a newline.

>> str = OpenWrite[]

OutputStream
[

/tmp/tmpsRKWlB, 1 066
]

>> Write[str, 10 x + 15 y ^ 2]

>> Write[str, 3 Sin[z]]

>> Close[str]
/tmp/tmpsRKWlB

>> str = OpenRead[%];

>> ReadList[str]{
10 x + 15 y ∧ 2, 3 Sin[z]

}

WriteString

WriteString[stream, $str1, str2, ...
]

writes the strings to the output
stream.

>> str = OpenWrite[];

>> WriteString[str, "This is a
test 1"]

>> WriteString[str, "This is
also a test 2"]

>> Close[str]
/tmp/tmp60VIlc

>> FilePrint[%]
This is a test 1This is also a test 2

>> str = OpenWrite[];

>> WriteString[str, "This is a
test 1", "This is also a test
2"]

>> Close[str]
/tmp/tmponOHSL

>> FilePrint[%]
This is a test 1This is also a test 2

188

XXXVI. Importing and Exporting

Contents

Export 189
$ExportFormats . . . 189
FileFormat 189

Import 190
$ImportFormats . . . 190
RegisterExport . . . 190

RegisterImport . . . 192

Export

Export["file.ext", expr]
exports expr to a file, using the exten-
sion ext to determine the format.

Export["file", expr, "format"]
exports expr to a file in the specified
format.

Export["file", exprs, elems]
exports exprs to a file as elements
specified by elems.

$ExportFormats

$ExportFormats
returns a list of file formats supported
by Export.

>> $ExportFormats

{CSV, Text}

FileFormat

FileFormat["name"]
attempts to determine what format
Import should use to import speci-
fied file.

>> FileFormat["ExampleData/
sunflowers.jpg"]

JPEG

>> FileFormat["ExampleData/
EinsteinSzilLetter.txt"]

Text

>> FileFormat["ExampleData/lena.
tif"]

TIFF

Import

Import["file"]
imports data from a file.

Import["file", elements]
imports the specified elements from a
file.

Import["http://url", ...] and Import
["ftp://url", ...]

imports from a URL.

>> Import["ExampleData/
ExampleData.txt", "Elements"]

{Data, Lines, Plaintext,
String, Words}

189

>> Import["ExampleData/
ExampleData.txt", "Lines"]

{Example File Format, Created
by Angus, 0.629452 0.586355,
0.711009 0.687453, 0.246540
0.433973, 0.926871 0.887255,
0.825141 0.940900, 0.847035
0.127464, 0.054348 0.296494,
0.838545 0.247025, 0.838697
0.436220, 0.309496 0.833591}

>> Import["ExampleData/colors.
json"]

{colorsArray-> {{colorName->black,
rgbValue->(0, 0,
0), hexValue->#000 000} ,
{colorName->red, rgbValue->(255,
0, 0), hexValue->#FF0 000} ,
{colorName->green, rgbValue->(0,
255, 0), hexValue->#00FF00} ,
{colorName->blue, rgbValue->(0,
0, 255), hexValue->#0 000FF} ,
{colorName->yellow,
rgbValue->(255, 255, 0),
hexValue->#FFFF00} ,
{colorName->cyan, rgbValue->(0,
255, 255), hexValue->#00FFFF} ,
{colorName->magenta,
rgbValue->(255, 0, 255),
hexValue->#FF00FF} ,
{colorName->white,
rgbValue->(255, 255, 255),
hexValue->#FFFFFF}}}

$ImportFormats

$ImportFormats
returns a list of file formats supported
by Import.

>> $ImportFormats

{CSV, JSON, Text}

RegisterExport

RegisterExport["format", func]
register func as the default function
used when exporting from a file of
type "format".

Simple text exporter
>> ExampleExporter1[filename_,

data_, opts___] := Module[{
strm = OpenWrite[filename],
char = data}, WriteString[
strm, char]; Close[strm]]

>> RegisterExport["
ExampleFormat1",
ExampleExporter1]

>> Export["sample.txt", "Encode
this string!", "
ExampleFormat1"];

>> FilePrint["sample.txt"]

Encode this string!

Very basic encrypted text exporter
>> ExampleExporter2[filename_,

data_, opts___] := Module[{
strm = OpenWrite[filename],
char}, (* TODO: Check data *)
char = FromCharacterCode[Mod[
ToCharacterCode[data] - 84,
26] + 97]; WriteString[strm,
char]; Close[strm]]

>> RegisterExport["
ExampleFormat2",
ExampleExporter2]

>> Export["sample.txt", "
encodethisstring", "
ExampleFormat2"];

>> FilePrint["sample.txt"]

rapbqrguvffgevat

190

RegisterImport

RegisterImport["format", defaultFunc-
tion]

register defaultFunction as the default
function used when importing from a
file of type "format".

RegisterImport["format", {"elem1" :>
conditionalFunction1, "elem2" :> condi-
tionalFunction2, ..., defaultFunction}]

registers multiple elements (elem1, ...)
and their corresponding converter
functions (conditionalFunction1, ...) in
addition to the defaultFunction.

RegisterImport["format", {"
conditionalFunctions, defaultFunction,
"elem3" :> postFunction3, "elem4" :>

postFunction4, ...}]
also registers additional elements
(elem3, ...) whose converters (post-
Function3, ...) act on output from the
low-level funcions.

First, define the default function used to im-
port the data.
>> ExampleFormat1Import[

filename_String] := Module[{
stream, head, data}, stream =
OpenRead[filename]; head =

ReadList[stream, String, 2];
data = Partition[ReadList[
stream, Number], 2]; Close[
stream]; {"Header" -> head, "
Data" -> data}]

RegisterImport is then used to register the
above function to a new data format.
>> RegisterImport["

ExampleFormat1",
ExampleFormat1Import]

>> FilePrint["ExampleData/
ExampleData.txt"]

Example File Format

Created by Angus

0.629452 0.586355
0.711009 0.687453
0.246540 0.433973
0.926871 0.887255
0.825141 0.940900
0.847035 0.127464
0.054348 0.296494
0.838545 0.247025
0.838697 0.436220
0.309496 0.833591

>> Import["ExampleData/
ExampleData.txt", {"
ExampleFormat1", "Elements"}]

{Data, Header}

>> Import["ExampleData/
ExampleData.txt", {"
ExampleFormat1", "Header"}]

{Example File Format,
Created by Angus}

Conditional Importer:
>> ExampleFormat2DefaultImport[

filename_String] := Module[{
stream, head}, stream =
OpenRead[filename]; head =
ReadList[stream, String, 2];
Close[stream]; {"Header" ->
head}]

>> ExampleFormat2DataImport[
filename_String] := Module[{
stream, data}, stream =
OpenRead[filename]; Skip[
stream, String, 2]; data =
Partition[ReadList[stream,
Number], 2]; Close[stream];
{"Data" -> data}]

191

>> RegisterImport["
ExampleFormat2", {"Data" :>
ExampleFormat2DataImport,
ExampleFormat2DefaultImport}]

>> Import["ExampleData/
ExampleData.txt", {"
ExampleFormat2", "Elements"}]

{Data, Header}

>> Import["ExampleData/
ExampleData.txt", {"
ExampleFormat2", "Header"}]

{Example File Format,
Created by Angus}

>> Import["ExampleData/
ExampleData.txt", {"
ExampleFormat2", "Data"}] //
Grid

0.629452 0.586355
0.711009 0.687453
0.24654 0.433973

0.926871 0.887255
0.825141 0.9409
0.847035 0.127464
0.054348 0.296494
0.838545 0.247025
0.838697 0.43622
0.309496 0.833591

192

Part III.

License

193

A. GNU General Public License

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.
The licenses for most software and other practical works are designed to take away your free-
dom to share and change the works. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change all versions of a program—to make sure it re-
mains free software for all its users. We, the Free Software Foundation, use the GNU General
Public License for most of our software; it applies also to any other work released this way by
its authors. You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs, and that
you know you can do these things.
To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of
the software, or if you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.
Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.
For the developers and authors protection, the GPL clearly explains that there is no war-
ranty for this free software. For both users and authors sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run modified versions of the soft-
ware inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals to use, which is precisely where it is
most unacceptable. Therefore, we have designed this version of the GPL to prohibit the prac-
tice for those products. If such problems arise substantially in other domains, we stand ready

194

http://fsf.org/

to extend this provision to those domains in future versions of the GPL, as needed to protect
the freedom of users.
Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in
those that do, we wish to avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to
render the program non-free.
The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except ex-
ecuting it on a computer or modifying a private copy. Propagation includes copying, distri-
bution (with or without modification), making available to the public, and in some countries
other activities as well.
To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer of
a copy, is not conveying.
An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.
A “Standard Interface” means an interface that either is an official standard defined by a rec-
ognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.
The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which is
not part of that Major Component, and (b) serves only to enable use of the work with that Major

195

Component, or to implement a Standard Interface for which an implementation is available to
the public in source code form. A “Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific operating system (if any) on
which the executable work runs, or a compiler used to produce the work, or an object code
interpreter used to run it.
The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s System
Libraries, or general-purpose tools or generally available free programs which are used un-
modified in performing those activities but which are not part of the work. For example, Cor-
responding Source includes interface definition files associated with source files for the work,
and the source code for shared libraries and dynamically linked subprograms that the work
is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and
are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered
work is covered by this License only if the output, given its content, constitutes a covered
work. This License acknowledges your rights of fair use or other equivalent, as provided by
copyright law.
You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated be-
low. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any ap-
plicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights under
this License with respect to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the works users, your or
third parties legal rights to forbid circumvention of technological measures.

196

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice; keep intact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

• b) The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

• c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal No-
tices; however, if the Program has interactive interfaces that do not display Appropriate
Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,

197

to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way through
the same place at no further charge. You need not require recipients to copy the Corre-
sponding Source along with the object code. If the place to copy the object code is a
network server, the Corresponding Source may be on a different server (operated by you
or a third party) that supports equivalent copying facilities, provided you maintain clear
directions next to the object code saying where to find the Corresponding Source. Re-
gardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered to
the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.
A “User Product” is either (1) a “consumer product”, which means any tangible personal prop-
erty which is normally used for personal, family, or household purposes, or (2) anything de-
signed or sold for incorporation into a dwelling. In determining whether a product is a con-
sumer product, doubtful cases shall be resolved in favor of coverage. For a particular product
received by a particular user, “normally used” refers to a typical or common use of that class
of product, regardless of the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A product is a consumer prod-
uct regardless of whether the product has substantial commercial, industrial or non-consumer
uses, unless such uses represent the only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.

198

Access to a network may be denied when the modification itself materially and adversely af-
fects the operation of the network or violates the rules and protocols for communication across
the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material;
or

• e) Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

• f) Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors. All other non-permissive additional terms are considered
“further restrictions” within the meaning of section 10. If the Program as you received
it, or any part of it, contains a notice stating that it is governed by this License along
with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License,
you may add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating

199

where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been termi-
nated and not permanently reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work. These
actions infringe copyright if you do not accept this License. Therefore, by modifying or prop-
agating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.
An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Correspond-
ing Source of the work from the predecessor in interest, if the predecessor has it or can get it
with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a

200

cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.
A contributor’s “essential patent claims” are all patent claims owned or controlled by the con-
tributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of
the contributor version. For purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or prop-
agate by procuring conveyance of, a covered work, and grant a patent license to some of the
parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.
A patent license is “discriminatory” if it does not include within the scope of its coverage, pro-
hibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered work if you are a party
to an arrangement with a third party that is in the business of distributing software, under
which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the covered work, unless you
entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

201

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a consequence you may not convey
it at all. For example, if you agree to terms that obligate you to collect a royalty for further
conveying from those to whom you convey the Program, the only way you could satisfy both
those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public Li-
cense into a single combined work, and to convey the resulting work. The terms of this License
will continue to apply to the part which is the covered work, but the special requirements of
the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version
or of any later version published by the Free Software Foundation. If the Program does not
specify a version number of the GNU General Public License, you may choose any version
ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version perma-
nently authorizes you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE

202

OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program ’s name and a brief idea of what it
does.>
Copyright (C) <year > <name of author >

This program is free software: you can redistribute it and/or
modify

it under the terms of the GNU General Public License as
published by

the Free Software Foundation , either version 3 of the License
, or

(at your option) any later version.

This program is distributed in the hope that it will be
useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty
of

203

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public
License

along with this program. If not , see <http :// www.gnu.org/
licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts
in an interactive mode:

<program > Copyright (C) <year > <name of author >
This program comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’.
This is free software , and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w and ‘show c should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.
You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how
to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.
The GNU General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please read http://www.gnu.
org/philosophy/why-not-lgpl.html.

204

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

B. Included software and data

Included data

Mathics includes data from Wikipedia that is published under the Creative Commons Attribution-
Sharealike 3.0 Unported License and the GNU Free Documentation License contributed by the
respective authors that are listed on the websites specified in "data/elements.txt".

SPARK

The “Scanning, Parsing and Rewriting Kit” from http://pages.cpsc.ucalgary.ca/~{}aycock/
spark/.
Copyright © 1998-2002 John Aycock
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

scriptaculous

Copyright © 2005-2008 Thomas Fuchs (http://script.aculo.us, http://mir.aculo.us)
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

205

http://pages.cpsc.ucalgary.ca/~{ }aycock/spark/
http://pages.cpsc.ucalgary.ca/~{ }aycock/spark/
http://script.aculo.us
http://mir.aculo.us

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Prototype

Copyright © 2005-2010 Sam Stephenson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

MathJax

Copyright © 2009-2010 Design Science, Inc.
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file
except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the Li-
cense is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Three.js

Copyright © 2010-2012 Three.js authors.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

206

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

207

Index

$DateStringFormat, 77
$ExportFormats, 189
$HistoryLength, 79
$HomeDirectory, 181
$ImportFormats, 190
$InitialDirectory, 181
$Input, 182
$InputFileName, 182
$InstallationDirectory, 182
$Line, 80
$ModuleNumber, 160
$OperatingSystem, 183
$Path, 183
$PathnameSeparator, 183
$RandomState, 148
$RecursionLimit, 80
$RootDirectory, 185
$TemporaryDirectory, 187
$TimeZone, 77
$Version, 170

Abort, 69
Abs, 38
AbsoluteFileName, 174
AbsoluteThickness, 90
AbsoluteTime, 74
AbsoluteTiming, 74
AddTo, 47
AiryAi, 151
AiryAiZero, 151
AiryBi, 151
AiryBiZero, 152
Alternatives, 134
And, 122
AngerJ, 152
Apart, 35
Apply, 165
ApplyLevel, 165
ArcCos, 82

ArcCosh, 82
ArcCot, 83
ArcCoth, 83
ArcCsc, 83
ArcCsch, 83
ArcSec, 83
ArcSech, 83
ArcSin, 83
ArcSinh, 84
ArcTan, 84
ArcTanh, 84
Array, 112
ArrayDepth, 171
ArrayQ, 171
AtomQ, 165
Attributes, 56

BaseForm, 127
BesselI, 152
BesselJ, 152
BesselJZero, 153
BesselK, 153
BesselY, 153
BesselYZero, 153
BinaryRead, 175
BinaryWrite, 175
Binomial, 65
Black, 90
Blank, 134
BlankNullSequence, 134
BlankSequence, 135
Blend, 90
Block, 159
Blue, 91
Break, 69

Cancel, 35
Cases, 112
CharacterRange, 161
Characters, 161

208

ChebyshevT, 153
ChebyshevU, 153
Chop, 127
Circle, 91
CircleBox, 91
Clear, 47
ClearAll, 48
ClearAttributes, 56
Close, 176
CMYKColor, 91
ColorData, 139
ColorDataFunction, 139
Complement, 112
Complex, 39
ComplexInfinity, 38
Composition, 88
CompoundExpression, 69
Compress, 176
Condition, 135
ConstantArray, 113
Context, 159
Continue, 69
CoprimeQ, 123
CopyDirectory, 177
CopyFile, 177
Cos, 84
Cosh, 84
Cot, 84
Coth, 85
CreateDirectory, 177
Csc, 85
Csch, 85
Cuboid, 99
Cyan, 91

D, 60
Darker, 91
DateDifference, 75
DateList, 75
DatePlus, 76
DateString, 76
Decrement, 48
Default, 131
DefaultValues, 48
Definition, 48
DeleteDirectory, 177
DeleteDuplicates, 113
DeleteFile, 177

Denominator, 36
DensityPlot, 139
Depth, 166
Derivative, 61
Det, 109
DiagonalMatrix, 171
Dimensions, 171
DirectedInfinity, 39
Directive, 92
Directory, 177
DirectoryName, 177
DirectoryQ, 178
DirectoryStack, 178
Disk, 92
DiskBox, 92
Divide, 39
DivideBy, 50
Do, 70
Dot, 172
DownValues, 50
Drop, 113
DSolve, 78

E, 85
EdgeForm, 92
Eigenvalues, 109
Eigenvectors, 109
ElementData, 145
Equal, 66
Erf, 154
Evaluate, 79
EvenQ, 123
ExactNumberQ, 40
Exp, 85
Expand, 36
ExpandFileName, 178
Export, 189
Extract, 113

FaceForm, 92
Factor, 36
Factorial, 40
FactorInteger, 123
Fibonacci, 65
FileBaseName, 178
FileByteCount, 178
FileDate, 178
FileExistsQ, 179

209

FileExtension, 179
FileFormat, 189
FileHash, 179
FileNameDepth, 179
FileNameJoin, 180
FileNameSplit, 180
FilePrint, 180
FileType, 180
Find, 180
FindFile, 181
FindList, 181
FindRoot, 61
First, 113
FixedPoint, 70
FixedPointList, 70
Flat, 57
Flatten, 166
Floor, 108
For, 71
Format, 102
FreeQ, 166
FromCharacterCode, 161
FullForm, 102
Function, 88

Gamma, 40
GCD, 124
GegenbauerC, 154
General, 102
Get, 181
GoldenRatio, 85
Graphics, 92
Graphics3D, 99
Graphics3DBox, 101
GraphicsBox, 93
Gray, 93
GrayLevel, 93
Greater, 66
GreaterEqual, 67
Green, 93
Grid, 103
GridBox, 103

HankelH1, 154
HankelH2, 154
HarmonicNumber, 41
Head, 166
HermiteH, 154

Hold, 79
HoldAll, 57
HoldAllComplete, 57
HoldComplete, 79
HoldFirst, 57
HoldForm, 79
HoldPattern, 135
HoldRest, 57
Hue, 93

I, 41
Identity, 89
IdentityMatrix, 172
If, 71
Im, 41
Import, 189
In, 80
Increment, 50
Inequality, 67
InexactNumberQ, 41
Infinity, 41
Infix, 103
Inner, 172
InputForm, 103
InputStream, 182
Inset, 94
InsetBox, 94
Integer, 42
IntegerDigits, 128
IntegerExponent, 124
IntegerLength, 108
IntegerQ, 41
Integrate, 62
Inverse, 109

JacobiP, 154
Join, 114

KelvinBei, 155
KelvinBer, 155
KelvinKei, 155
KelvinKer, 156

LaguerreL, 156
Last, 114
LCM, 124
LegendreP, 156
LegendreQ, 157
Length, 114

210

Less, 67
LessEqual, 67
Level, 114
LevelQ, 115
Lighter, 94
LightRed, 94
Limit, 62
Line, 94
Line3DBox, 101
LinearSolve, 110
LineBox, 95
List, 115
Listable, 57
ListLinePlot, 140
ListPlot, 140
ListQ, 115
Locked, 57
Log, 86
Log10, 86
Log2, 86

MachinePrecision, 128
Magenta, 95
MakeBoxes, 103
Map, 167
MapIndexed, 167
MatchQ, 135
MathMLForm, 103
MatrixForm, 103
MatrixQ, 172
MatrixRank, 110
Max, 67
MemberQ, 115
Mesh, 141
Message, 104
MessageName, 104
Messages, 51
Min, 67
Minus, 42
Mod, 124
Module, 160
Most, 115
Multinomial, 65

N, 128
Names, 170
Needs, 182
Negative, 67

Nest, 71
NestList, 72
NestWhile, 72
NextPrime, 124
NHoldAll, 57
NHoldFirst, 58
NHoldRest, 58
NonNegative, 67
NonPositive, 67
Not, 122
NotListQ, 116
NotOptionQ, 131
Null, 167
NullSpace, 110
NumberQ, 42
Numerator, 36
NumericQ, 129
NValues, 51

OddQ, 124
Offset, 95
OneIdentity, 58
OpenAppend, 182
OpenRead, 182
OpenWrite, 182
Operate, 168
Optional, 135
OptionQ, 131
Options, 132
OptionsPattern, 136
OptionValue, 132
Or, 122
Orange, 95
OrderedQ, 168
Orderless, 58
Out, 80
Outer, 172
OutputForm, 104
OutputStream, 183
OwnValues, 51

ParametricPlot, 141
ParentDirectory, 183
Part, 116
Partition, 117
Pattern, 136
PatternsOrderedQ, 168
PatternTest, 136

211

Pause, 77
Pi, 86
Piecewise, 42
Plot, 142
Plot3D, 143
Plus, 42
Pochhammer, 43
Point, 95
Point3DBox, 101
PointBox, 96
PolarPlot, 144
Polygon, 96
Polygon3DBox, 101
PolygonBox, 96
Positive, 67
Postfix, 104
Power, 43
PowerExpand, 36
PowerMod, 125
Precedence, 104
Precision, 129
PreDecrement, 51
Prefix, 105
PreIncrement, 52
PrePlus, 43
Prime, 125
PrimePi, 125
PrimePowerQ, 125
PrimeQ, 125
Print, 105
Product, 44
ProductLog, 157
Protect, 58
Protected, 58
Purple, 96
Put, 183
PutAppend, 184

Quiet, 105
Quit, 52

RandomComplex, 147
RandomInteger, 148
RandomPrime, 126
RandomReal, 148
Range, 117
Rational, 44
Re, 44

Read, 184
ReadList, 185
Real, 45
RealNumberQ, 44
Reap, 117
Rectangle, 97
RectangleBox, 97
Red, 97
RegisterExport, 190
RegisterImport, 191
ReleaseHold, 81
RenameDirectory, 185
RenameFile, 185
Repeated, 137
RepeatedNull, 137
ReplaceAll, 137
ReplaceList, 137
ReplacePart, 118
ReplaceRepeated, 138
ResetDirectory, 185
Rest, 118
RGBColor, 97
Riffle, 118
Round, 129
Row, 106
RowBox, 106
RowReduce, 110
RSolve, 150
Rule, 138
RuleDelayed, 138

SameQ, 67
Sec, 86
Sech, 87
SeedRandom, 149
Select, 119
Sequence, 81
SequenceHold, 59
SessionTime, 77
Set, 52
SetAttributes, 59
SetDelayed, 53
SetDirectory, 185
SetFileDate, 186
SetStreamPosition, 186
Simplify, 37
Sin, 87
Sinh, 87

212

Skip, 186
Slot, 89
SlotSequence, 89
Solve, 63
Sort, 168
Sow, 119
Span, 119
Sphere, 101
Sphere3DBox, 101
SphericalHarmonicY, 157
Split, 119
SplitBy, 119
Sqrt, 45
StandardForm, 106
StreamPosition, 186
Streams, 187
String, 163
StringForm, 106
StringJoin, 161
StringLength, 162
StringQ, 162
StringReplace, 162
StringSplit, 162
StringToStream, 187
StruveH, 157
StruveL, 158
Style, 106
Subscript, 106
Subsuperscript, 106
Subtract, 45
SubtractFrom, 53
SubValues, 53
Sum, 45
Superscript, 106
Switch, 72
Symbol, 169
SymbolName, 169
SymbolQ, 169

Table, 120
TableForm, 106
TagSet, 53
TagSetDelayed, 54
Take, 120
Tan, 87
Tanh, 87
TeXForm, 106
Text, 98

Thick, 98
Thickness, 98
Thin, 98
Thread, 169
Through, 169
Times, 46
TimesBy, 54
TimeUsed, 77
Timing, 77
ToBoxes, 107
ToCharacterCode, 163
ToExpression, 163
Together, 37
ToString, 163
Transpose, 173
Tuples, 120

Uncompress, 187
Unequal, 67
Unevaluated, 81
UnitVector, 121
Unprotect, 59
UnsameQ, 68
Unset, 54
UpSet, 54
UpSetDelayed, 55
UpValues, 55

Variables, 37
VectorQ, 173
Verbatim, 138

WeberE, 158
Which, 72
While, 73
White, 98
Write, 188
WriteString, 188

Yellow, 98

Zeta, 158

213

	Manual
	Introduction
	Installation
	Language tutorials
	Examples
	Web interface
	Implementation

	Reference of built-in symbols
	Algebra
	Arithmetic functions
	Assignment
	Attributes
	Calculus functions
	Combinatorial
	Comparison
	Control statements
	Date and Time
	Differential equation solver functions
	Evaluation
	Exponential, trigonometric and hyperbolic functions
	Functional programming
	Graphics
	Graphics (3D)
	Input and Output
	Integer functions
	Linear algebra
	List functions
	Logic
	Number theoretic functions
	Numeric evaluation
	Options and default arguments
	Patterns and rules
	Plotting
	Physical and Chemical data
	Random number generation
	Recurrence relation solvers
	Special functions
	Scoping
	String functions
	Structure
	System functions
	Tensor functions
	File Operations
	Importing and Exporting

	License
	GNU General Public License
	Included software and data
	Index

